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Electoral forensics involves examining election results for anomalies to efficiently identify patterns indicative

of electoral irregularities. However, there is disagreement about which, if any, forensics tool is most effective

at identifying fraud, and there is no method for integrating multiple tools. Moreover, forensic efforts have

failed to systematically take advantage of country-specific details that might aid in diagnosing fraud. We

deploy a Bayesian additive regression trees (BART) model—a machine-learning technique—on a large

cross-national data set to explore the dense network of potential relationships between various forensic

indicators of anomalies and electoral fraud risk factors, on the one hand, and the likelihood of fraud, on the

other. This approach allows us to arbitrate between the relative importance of different forensic and con-

textual features for identifying electoral fraud and results in a diagnostic tool that can be relatively easily

implemented in cross-national research.

1 Introduction

Electoral fraud disrupts the chain of responsiveness that links politicians to their supporters and, by
doing so, brings to power “representatives” who do not reflect the will of the people. When de-
tected—or even suspected—fraud erodes the legitimacy of the democratic process and can provoke
violent unrest, repression, and even civil war. Unfortunately, it remains extremely difficult to detect
instances of fraud. Perpetrators of electoral fraud are highly motivated to conceal their acts from
opposition parties, the press, and election monitors. As a consequence, confidently determining
when fraud has occurred and when it has not is challenging.

In this article, we propose a novel approach for estimating the extent to which an election was
likely characterized by fraud that relies only upon subnational election returns and a few
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widely available pieces of information about the context of the election. Our method builds upon

electoral forensics techniques, an appealing approach to identifying fraud that has received consid-

erable scholarly attention in recent years. The forensic approach involves analyzing vote results for

anomalous numerical patterns. Forensic methods are attractive for at least three reasons. First,

they can be applied to election results as soon as they are reported. Second, the anomalous patterns

of interest are not specific to the election, country, or culture in question. Finally, the search for

anomalous patterns can be applied to any set of results (including historical ones), even if monitors

were not present at the election.
Despite their promise, forensic techniques have several limitations. To begin, it is unclear if any

single anomaly or pattern can by itself be taken as evidence of fraud. Each forensic tool has its own

theoretical basis, with unique strengths and weaknesses. Relying on any one in isolation may be

inefficient or, perhaps, even misleading. Nevertheless, surprisingly few projects have sought to

empirically test the relative predictive power of the various forensic tools or sought to combine

the various forensic tools in some systematic manner.
Further, while many practitioners of electoral forensics acknowledge that information about

case-specific contextual factors should be used to inform the approach, far fewer systematically

integrate such knowledge into their analyses. Scholars of electoral fraud who focus on more “sub-

stantive”—or nonforensic—analyses of elections have identified several contextual risk factors that

increase the likelihood of electoral fraud, including elements as varied as socioeconomic inequalities

and district magnitude. Their work clearly suggests that, for instance, elections held in Norway are

a priori less likely to be fraudulent than those held in Congo and that relatively stronger evidence

should be required before declaring Norwegian results fraudulent based on anomalous digit dis-

tributions. Ideally, we should augment forensic analyses to systematically incorporate this kind of

contextual information without engaging in an ad hoc exercise of turning to idiosyncratic, case-

specific features.
In this article, we propose what we call an informed forensics approach to identifying fraud in a

large cross-national setting. Drawing on the forensics literature, we specify an array of forensic

indicators for detecting anomalous returns (e.g., digit distributions) that we include in our model.

We augment—or inform—these forensic tools with several widely available, country-specific risk

factors that past research suggests increase the probability that fraud will be perpetrated during an

election. We create a cross-national data set spanning seventy countries and six decades containing

three sets of variables: (1) an explicit measure of likely fraud constructed from evaluations by

election monitors and other political actors, (2) forensic indicators of anomalous vote distributions,

and (3) contextual risk factors that, while not directly measuring fraud, have been identified in past

research as increasing the likelihood of fraud.
To combine forensic indicators and contextual risk factors, we fit a Bayesian additive regression

trees (BART) model—a machine-learning technique. By allowing the BART model to explore the

dense network of potential relationships between different forensic indicators and contextual risk

factors, on the one hand, and the propensity for fraud (as captured by our explicit measure), on the

other, this approach is able (1) to improve the out-of-sample predictive performance of the model

and (2) to arbitrate between the relative importance of different features—both forensic and con-

textual—for identifying irregularities.
The article proceeds as follows. First, we briefly review the literature that applies forensic indi-

cators to electoral returns, focusing on methods that compare electoral returns to theoretic base-

lines. We also review the nonforensic, more contextual literature on election fraud to identify the

risk factors associated with malfeasance. In Section 2.3, we combine these forensic indicators and

contextual factors with a novel measure of likely defrauded elections constructed from the National

Elections Across Democracy and Autocracy (NELDA) data set (Hyde and Marinov 2012). In

Section 3, we describe the BART model, which we subsequently set to learn from this cross-

national data set. In Section 4, we show that forensic indicators and context-specific risk factors

in combination allow us to make better out-of-sample predictions of likely fraudulent elections than

relying on either approach alone, that the variables most dispositive for identifying elections that

were likely defrauded are a combination of contextual risk factors and forensic tools, and that we
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can validate our informed forensic approach by comparing the model’s predictions with alternative
measures of electoral malfeasance.

2 Forensic Tools and Contextual Risk Factors

Forensic methods seek to use recorded votes to find anomalies consistent with human manipulation
(Mebane 2008). The literature contains a rich array of methods, with most works falling into two
categories: (1) those that compare results to a theoretical baseline and (2) those that compare results
to some empirical baseline. We briefly review only tools from the theoretical baseline approach here
because they are superior for our purposes. Tools that rely on an empirical baseline (e.g.,
comparing results across geographic areas or comparing current returns to historical results)
tend to be more case-specific, making them less appropriate given our goal of building a method
for detecting fraud that can be quickly applied in any country and at any point in time.

2.1 Forensic Methods for Identifying Fraud

Forensic indicators based on theoretical baseline distributions take observed distributions of
specific integers as they appear in aggregated election results and compare them to digit distribu-
tions that arise when results are generated “naturally.”1 These indicators make use of predictions
about how often specific integers or combinations of integers should appear in naturally occurring
data sets.

Perhaps the most quintessential forensic indicators rely on theoretical baselines derived from
Benford’s Law (Benford 1938). While it may seem intuitive that each integer should appear as the
first significant digit equally often, this intuition is incorrect. Instead, under specific conditions, the
integer one occurs about 30% of the time and each successive integer occurs increasingly less often,
with the integer nine occurring less than 5% of the time. Extremely disaggregated, low-level counts
(where results are inherently capped) or vote outcomes where an effort has been made to create
districts with roughly equal numbers of voters may not conform because they are not entirely
natural.2 Fortunately, as Mebane (2010) notes, while low-level vote counts rarely have first digits
that satisfy Benford’s Law, there is no reason why they should not have second digits that do.
Contrary to expectations about first and second digits, Mebane and Kalinin (2009) reason that,
unlike first or second significant digits, each integer should occur equally often in the last digit of
reported turnout figures. Thus, we examine both the distribution of integers in the final digit of
election returns as well as deviations from Benford’s Law in the second digit.

Beber and Scacco (2012) show that individuals fabricating numbers exhibit a preference for pairs
of adjacent digits, suggesting that such pairs (e.g., twenty-three) should be overly abundant in
fraudulent vote tallies. Likewise, subjects avoid pairs of distant numerals, suggesting that distant
pairs (e.g., twenty-eight) should appear with lower frequency. Further, Beber and Scacco (2012)
also show that individuals underestimate the likelihood of integer repetition in numerical sequences,
even when incentivized to create truly random data. This implies that they should observe (rela-
tively) few instances of repeated integers (e.g., forty-four) in manipulated vote tallies. Our measure
of distance between integers will capture this phenomenon (a distance of zero)—but only for the
last pair of digits. Based on this experimental work, then, unusually low or high average distances
across the final two digits may indicate anomalies.

Finally, several scholars examine the first moment (i.e., the mean) of the second significant digit
distribution (Grendar, Judge, and Schechter 2007; Cantú and Saiegh 2011; Mebane 2012). They
contend that this allows for the detection of variations away from “Benford-like” distributions
rather than assuming some specific expected distribution. For our purposes here, the work of Cantú
and Saiegh (2011) is particularly relevant. Their approach is to learn from synthetic data created to
resemble two sets of historic, district-level election results from the province of Buenos Aires,

1This means that the numbers are neither assigned nor influenced by human goals. They also cannot be governed by
exogenously imposed minima or maxima.

2See Mebane (2010) and Cho and Gaines (2007) on this point.

Jacob M. Montgomery et al.490

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 H

ar
va

rd
 U

ni
ve

rs
ity

, o
n 

12
 Ju

n 
20

20
 a

t 0
3:

20
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

93
/p

an
/m

pv
02

3

23
-
28
44
 -- 
unusually 
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1093/pan/mpv023


Argentina (one from an election widely acknowledged to have been rigged and another from one
widely recognized to have been fair). They then used this synthetic data to train a naive Bayes
classifier to recognize instances of fraud. We follow up on their work by including the first moment
of the second significant digit distribution among the forensic indicators we explore.

Drawing on this very brief review of some of the literature that employs forensic tools based on
theoretic baselines, we built a set of forensic indicators for as many country-elections as possible
within the constraints of available data. To construct our forensic tools, we collected district-level
electoral results from two of the most prominent repositories of comparative electoral data: the
Global Elections Database (Brancati 2007) and the Constituency-Level Elections Archive (CLEA)
(Kollman et al. 2011). By combining these data sets, we were able to assemble returns from 598
elections in a diverse set of seventy countries around the world, with significant coverage in each of
the world’s major geopolitical regions (see Online Appendix A for a list of included cases).
Importantly, our cases include both places where previous work suggests that elections have
been “squeaky clean” and places where outcomes have been viewed with skepticism.

Our data consist entirely of district-level returns from which we calculate Oi as the observed
frequency of integer i 2 ½0; 9� appearing in the second significant digit in party-district vote totals
for election i (Mebane 2012). We can then calculate �22BL ¼

Pk
i¼1
ðOi�EiÞ

2

Ei
, where Ei is the expected

frequency of integer i according to the second-digit Benford’s Law (2BL). Second, following
Grendar, Judge, and Schechter (2007), we include the first moment of the second significant digit
distributions. We also include a measure of the degree to which the distribution of integers in the
final digit differs from the expected uniform distribution—�2Uniform.

Finally, following Beber and Scacco (2012), we also include measures for the mean distance
between integers in the last pair of party-district vote totals (see Online Appendix B for additional
coding information and descriptive statistics).3

2.2 Context-Specific Risk Factors

Recall that we are trying to build a means of detecting fraudulent election outcomes that combines
the insights and methodologies of both the election forensics and context-specific approaches to
studying electoral fraud. As we have argued above, we think that a forensics approach has many
positive features for both practitioners and scholars, but the intuition behind informing the foren-
sics approach is that the degree of irregularity in election results necessary to justify a “fraudulent”
diagnosis should differ across contexts. To preserve some of the appealing characteristics of forensic
approaches to detecting irregularities, we have focused on risk factors that, first, have predictive
power across many (if not all) cases and, second, are readily available for a significant number of
cases (see Online Appendix B for coding decisions).

The scholarly literature focusing on pre-election institutional and socioeconomic factors that
increase the danger of fraud being perpetrated later has identified two types of risk factors: vari-
ables that create environments where elites will be more motivated to commit fraud and features
that, given some actor’s desire to engage in malfeasance, affect the ease or difficulty of effectively
manipulating outcomes (Lehoucq 2003).

In terms of motivating elites, Boix (1999) and Acemoglu and Robinson (2006) argue that great
economic disparities cause elites to fear unfavorable electoral outcomes. When the economic stakes
of losing the election are high, this produces incentives to win elections at whatever cost. Similarly,
ethnic fractionalization may increase the probability that a group will fear turning over power after
losing an election (Lehoucq 2003). Losing control of the government to an ethnically distinct

3Before moving on, it is worth noting that at least two of these particular forensic tools have traditionally focused on
data at a very low level of aggregation (e.g., precinct-level data). The cross-national election results we use below are
generally available only at a higher level of aggregation. However, these forensics tools only require that—at some point
in the chain of moving from an individual’s vote to a national-level outcome—there is someone with the opportunity to
intentionally alter the results. In theory, then, the manipulation of election returns can occur at any level of aggregation,
whether it be the precinct, local, regional, or national level. For instance, some studies have suggested that fraud was
most prevalent at the national level during the 2004 Venezuelan presidential election (see, for instance, Martı́n 2011).
Hence, we believe that it is possible for irregularities to occur at levels of reporting above the level of the polling station.
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subpopulation increases the stakes relative to cases where the population is more homogeneous.
Finally, the geographic distribution of voters has also been cited as an indicator of the cost of losing
an election (Lehoucq 2003). In sparsely populated, relatively homogeneous districts, political stakes
are not nearly as high as they are in urban areas (Dardé 1996; Domı́nguez and McCann 1996).
Based on these works regarding motivation to commit fraud, we include measures of socioeconomic
inequality, ethnolinguistic fractionalization, and the rural/urban distribution of the population in our
models.

Turning from motivations to opportunities, failure by large swaths of the population to show up
to vote has been associated with greater opportunities to manipulate vote totals (Cox and Kousser
1981; Schedler 2002). To capture this leeway offered potential perpetrators of fraud, we include a
measure of turnout in our models. Further, where democratic norms and institutions—broadly
conceived—are limited, elections may manifest both autocratic elements and democratic
elements at the same time (Levitsky and Way 2002). In addition, Birch (2007) shows that experience
with elections is a primary determinant of the extent to which voters have the ability to estimate
likely levels of relative support for parties before elections (Birch 2007; Kitschelt et al. 1999), with
dramatic departures from this “electoral heuristic” serving as a signal that perhaps something is
amiss. To capture both of these latter constructs, we create a nominal measure of regime type that
takes on five possible values based on the “level of background democracy” (Birch 2007) and
democratic age.4

Finally, Lehoucq (2003) argues that district magnitude may be related to both the cost of losing
an election and the opportunity to engage in fraud. He reasons that increasing district magnitude
should decrease the motivation to engage in fraud in part because electoral outcomes are less high-
stakes as district magnitude (and vote-to-seat proportionality) increases. In terms of opportunity,
district magnitude tends to be associated with higher levels of turnout (Blais 2006; Cox 1999), and
high turnout complicates efforts to engage in fraud. We include average district magnitude in our
tests, reasoning that higher magnitudes may reduce both the motivation to engage in fraud and the
ease of carrying it out.

Finally, we control for three potentially important variables that are not mentioned in the
context-specific literature on fraud, but nevertheless might systemically contribute to the likelihood
of fraudulent activity on behalf of political elites.5 Economic crisis and regime crises—such as civil
wars, insurgencies, or coups—take into account short-term, within-country dynamics that might
prompt incumbent politicians to engage in malfeasance. For the first, we use change in change in
gross domestic product (GDP) per capita, as reported by the World Bank, in the calendar year
before the election as proxy, and the indicator for the second was a dichotomous recoding of the
Polity IV regime variable which takes a value of 1 in the case of coups, revolutions, state failures,
and fractional periods. The final control variable is election commission independence, the presence
of which we expect to tie the hands of political elites wishing to commit fraud. Using data from the
Institute for Democracy and Electoral Assistance on election management, we code as 0 those
election commissions managed by the government directly; 1 for those commissions that are par-
tially managed by the government; and 2 for those commissions that are completely independent of
government influence.

2.3 A Proxy Measure of Electoral Irregularities

For our statistical model to learn which forensic indicators and risk factors are most closely
associated with the incidence of fraud, we must first be able to identify cases in the past that
were more or less fraudulent on which to train it. Of course, if we had the means to create a

4This discretization will help make the machine-learning process computationally manageable, as described below.
Countries receiving a lagged Polity IV score ranging from –10 to –6 are coded as autocracies (n¼ 23). Countries in
the middle range of values (–6 to 5) are coded as anocracies (n¼ 64). Democratic countries, countries with Polity scores
above 5, were divided into two categories. Old democracies (n¼ 422) had lasted more than ten years, while new
democracies (n¼ 77) had ten years’ or less experience with elections (Beck et al. 2001).

5We thank an anonymous reviewer for bringing these additional variables to our attention.
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large data set where we knew with certainty which elections had been tainted, there would be much

less controversy in “the real world” over election outcomes and this entire exercise would be un-

necessary. However, outside the use of a crystal ball, the means of perfectly classifying elections as

defrauded or not does not exist, and we must build a proxy measure for fraud on which to train our

model combining forensic tools and context specifics.
The NELDA data set (Hyde and Marinov 2012) measures a number of good proxies for fraud (in

contrast to the predictors or risk factors discussed above). We focused on (1) items that covaried

strongly (providing reliability) and (2) items that satisfy the conditional independence assumption

of standard measurement models.6 The measures were then combined using a standard three-par-

ameter item response theoretic (IRT) model. Additional details about the items used and the

measurement model are provided in Online Appendix B.7

Table 1 provides the full distribution of our estimated fraud proxy for the cases that can be

matched up to the district-level vote returns needed to calculate forensic indicators, as well as some

exemplar cases that fall into each category. Unsurprisingly, allegations of fraud and election

irregularities are fairly uncommon in countries willing to provide full district-level election

results. Overall, 85.8% of all cases were included in our lowest category, providing no overt indi-

cation that electoral fraud had likely occurred. For the remaining cases, however, there is quite a bit

of variation as to how fraudulent the election appears according to our metric, with the most likely

fraudulent legislative elections appearing in Cameroon (1997, 2002), the Dominican Republic

(1962), and Equatorial Guinea (1993)—all elections with significant irregularities that have been

documented by both academic and journalistic sources.8

Table 1 Estimates of fraudulent elections for merged database (n¼ 598)

Fraud

score Frequency Percentage Examples

�0.41 524 87.63 Switzerland (1947–2007), Spain (1977–2008), Canada (1945–2008)
0.35 8 1.34 Bangladesh (2001), Philippines (1992,1995,2004), Zambia (2006)

0.49 36 6.02 Colombia (1998, 2006), Italy (1983, 2001, 2006), Venezuela (1973, 1978)
0.57 2 0.33 Romania (2004), Sri Lanka (2001)
0.74 2 0.33 Turkey (1991, 1995)

1.04 5 0.84 Guyana (2001), Jamaica (1967), Mexico (1991), Malawi (1999, 2004)
1.06 1 0.17 Thailand (1992)
1.10 1 0.17 Guyana (1997)

1.19 5 0.84 Kenya (1997), Albania (2005), Pakistan (2002), Sri Lanka (2010)
1.53 4 0.67 Mexico (1994), Pakistan (2008), Philippines (2007, 2010)
1.56 2 0.33 Jamaica (1976, 1980)

1.62 1 0.17 Turkey (1999)
1.64 1 0.17 Dominican Republic (1994)
1.67 2 0.33 Brazil (2002), Singapore (2006)
1.79 2 0.33 Cyprus(1981), Kenya (1992)

1.94 1 0.17 Cameroon (2002)
2.08 1 0.17 Cameroon (1997)

6Conditional independence, sometimes termed local independence, holds when two observed indicators are independent
of each other conditioned on the common latent trait being measured. This implies that pðx1; x2jyÞ ¼ pðx1jyÞpðx2jyÞ,
where x1 and x2 are indicators and y is the latent trait of interest.

7All data and computer code for these analyses are available in Montgomery et al. (2015).
8The countries that we include in our training and test sets from NELDA are limited to countries for which district-level
election data are readily accessible. The failure to make available district-level returns may disproportionately come
from countries with weak electoral infrastructures. These may also be the places, then, where some form of abnormality
or some level of malfeasance is most likely. Thus, we are building our informed forensics approach on a set of cases
where we are relatively less likely to find abnormalities. This is data limitation that plagues forensics approaches more
generally. The included elections, those with district-level returns, do appear to be significantly less fraudulent on
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3 An Informed Forensics Approach

The promise of the forensic approach lies in the applicability of the method across widely diverging
contexts, requiring neither on-the-ground monitoring, idiosyncratic reliance on case-specific
factors, nor special knowledge about a given country or election. Thus far, we have described
our cross-national data set containing several of the most prominent forensic indicators of anom-
alous outcomes, case-specific risk factors that provide context in which a country is more suscep-
tible to fraudulent behavior, and a proxy for the extent to which an election was likely defrauded.
Our goal now is to apply a nonparametric statistical technique from the machine-learning literature
to that data set to explore how these variables can best be combined to detect irregularities. In
Section 4, we then assess the quality of this model. Before turning to this assessment, however, we
provide some additional information and intuition about the statistical model.

BART are a tree-based approach to estimating a flexible functional relationship, gð:Þ, between
an outcome variable of interest Y and a set of predictors X (Chipman, George, and
McCulloch 2010; Green and Kern 2012; Hill 2012). In our case, the variable of interest (Y) is
our proxy fraud score and the set of predictors (X) includes both our forensic tools and our
contextual risk factors.

In their simplest form, tree-based approaches approximate the relationship between outcome Y
and X by first partitioning the universe of covariates into k mutually exclusive combinations of
covariate profiles and then specifying expected values M ¼ ð�1; �2; . . .; �kÞ. The partitioning is
accomplished by generating a series of inequality-based binary splits of the form xn � c and
xn � c, where c is some arbitrary threshold. This process can be thought of as the traversal of a
binary tree T from its root to one terminal node, at which point an expected value is assigned to
that profile.

As an example, the binary tree in Fig. 1 partitions the space defined by three covariates ðx1; x2; x3Þ
into six mutually exclusive covariate profiles. The terminal nodes are labeled A through F, and the
predictions at each terminal node are labeled ð�A; . . .; �FÞ. Thus, terminal node A provides prediction
�A for all observations such that x2 is non-positive and x1 is less than or equal to 0.5. Similarly, a
traversal of this tree shows that an observation with ðx1 ¼ 18; x2 ¼ 3; x3 ¼ �4Þ leads to terminal node
D, implying �D ¼ 23.

In general, given a full specification of a the binary tree T, we can take any observation (i.e., a
vector of values on all covariates) and “move down” the tree by following the splitting rules that

A B

C

D E

E

Fig. 1 An example regression tree.

average than excluded elections. Although we believe this does not undermine the value of the general approach we
describe, we caution against injudicious extrapolation beyond the sample of countries that provide district-level election
data.
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define the branches until a terminal node is reached. Equipped with a fully specified tree T and

a vector of predicted values M ¼ ð�1; �2; . . .; �nÞ, this assignment can be captured by a

function gðX;T;MÞ, which is a mapping of covariate profiles X to expected values M for a given

tree T.
To complete the regression tree formulation, we embed this functional relationship in a stochas-

tic framework such that Y is connected to the function gð:Þ in expectation. One general formulation

of a regression tree is

Y � DðgðX;T;MÞ; cÞ; ð1Þ

where D is some probability distribution and c are ancillary distribution parameters. By treating T

and M as parameters to be estimated, the regression-tree framework becomes amenable to

computation.
BART refines this basic regression-tree model in two notable ways (Chipman, George and

McCulloch 2010). First, it builds multiple trees and combines them additively. Specifically, for J

trees, the model becomes

Y � D
XJ
j¼1

gðX;Tj;MjÞ; c

 !
: ð2Þ

This sum-of-trees approach inherits the flexibility of single-tree models in terms of modeling inter-

actions of various orders, and it adds the possibility of modeling smooth main effects.
Second, the potential for overfitting is reduced by placing regularization priors over the model’s

parameters (i.e., T, M, and c). These priors serve to limit the size and complexity of trees, reducing

somewhat the probability of severe overfitting. Assuming a normal distribution as the likelihood D,

a Markov chain Monte Carlo (MCMC) backfitting algorithm can be used to explore the posterior

distribution, sampling (at each iteration), a modified set of trees, terminal-node value assignments,

and distribution parameters.9 Additional details about the BART model are provided in Online

Appendix F.

4 Results

Having reviewed the basic principles of the BART model, in this section we apply the technique to

our data set. Recall that the data set we constructed includes (1) forensic indicators of anomalous

digit distributions calculated from district-level election returns, (2) contextual risk factors

theorized to create an a priori context in which fraudulent behavior is ultimately more likely,

and (3) our proxy for observed fraud constructed from the NELDA data set. Our major claim is

that electoral fraud, as proxied by our NELDA indicator, will be most easily detected when relying

on both forensic indicators and contextual risk factors together relative to detecting fraud using

either set in isolation.
We test this hypothesis in three distinct ways. First, we explore which combination of variables

(i.e., contextual, forensic, or both) best predicts our electoral fraud proxy out-of-sample by fit-

ting three distinct BART models. As expected, our results suggest that the combined—or

informed forensics—model performs best. Second, we unpack the role of the individual vari-

ables in identifying fraudulent elections within sample. In so doing, we also explore the func-

tional relationships between our variables and the fraud proxy, allowing us to assess whether

they are each related to it in the anticipated manner. Third, we conclude this section by

validating the BART predictions against two alternative indicators of fraudulent elections in

the literature.

9In this case, we need to sample the variance parameter for the assumed normal distribution.
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4.1 Comparing BART Models

We randomly divided the observations into training and test sets, comprised of 83.6% (n¼ 500) and

16.4% (n¼ 98) of our data, respectively. The goal is to fit a BART model with the training portion

of the data using the fraud proxy as our dependent variable, and then validate the model using the

remaining observations allocated to the test set.10 Using the data that was not employed either in
fitting the BART model or in choosing the model hyperparameters (see footnote 11), we now

compare the performance of three BART model fits. We compared the performance of each

model using five model-fit statistics drawn from the forecasting literature (Brandt, Freeman, and

Schrodt 2014): root mean squared error (RMSE), mean absolute error (MAE), mean absolute

proportional error (MAPE), median absolute deviation (MAD), and median absolute proportional
error (MEAPE). MAPE is measured as a ratio of the error to the value of the dependent variable.

Additional details about each fit statistic are shown in Online Appendix C. For each fit statistic,

lower values indicate superior fit.
The results are shown in Table 2.11 All five metrics show that the informed forensic model

outperforms a BART model fit using either the forensic and contextual variables in isolation.12

More specifically, the consensus rank, defined as the mean ranking of the models as evaluated by
each fit statistic, shows the informed forensics approach to provide the most accurate out-of-sample

prediction (lower rank indicates superior fit).
One potential concern with these results is that, given that roughly five out of six of our obser-

vations take on the lowest fraud score, these fit statistics may simply be capturing the models’

accurate prediction of cases with no obvious fraudulent activities. That is, the model has high spe-
cificity but low sensitivity. To evaluate whether our model has a very high specificity at the expense of

sensitivity, we created binary versions of the outcome variable and the out-of-sample prediction from

the BART model. Specifically, we created a bivariate outcome variable that took on a value of zero

for negative scores (n¼ 80, 81.6% in the out-of-sample test set) and a value of one for all others.

Likewise, we created a variable that took on values of zero for all cases where the prediction was

negative (n¼ 82, 83.7% in the out-of sample test set) and one for all other cases. Of those cases that
were high on the fraud score (n¼ 18), the predictions from the BART model were also high in eleven

instances, giving this binary version of the BART prediction an out-of-sample sensitivity rate of

61.1%. Of those cases that were low on the fraud score (n¼ 80), they were also low on the BART

Table 2 Out-of-sample predictive performance of three BART fits

RMSE MAE MAPE MAD MEAPE Consensus rank

Informed forensics 0.407 0.234 0.430 0.090 0.222 1.0
Forensic tools only 0.486 0.297 0.549 0.153 0.377 3.0
Contextual risks only 0.417 0.238 0.440 0.090 0.223 2.0

n¼ 98

11We selected hyperparameter priors, which control the level of shrinkage, by performing a bootstrapping study where the
BART model was fit to hundred bootstrapped samples for each of thirty-two possible settings of the hyperpriors. Our
test-set was excluded entirely from this process, and the bootstrap samples were constructed using the moving block
sampling approach discussed below. In total, this involved fitting a total of 3200 individual BART models. We settled
for the parameters that resulted in the highest consensus rank, computed based on the measures of generalization error
discussed in Online Appendix E. The chosen parameters are as follows: power¼ 0.5, base¼ .95, sigdf¼ 10,
sigquant¼ 0.75, ntree¼ 100, and k¼ 2. All models were estimated using 5000 iterations after allowing for a burn-in
period of 50,000. In general, this is far more than is needed to allow for convergence, although this was not checked for
each and every model.

11For each of the three models, we used 50,000 iterations as a burn-in period, and kept the next 5000 iterations. Standard
diagnostics indicated sufficient convergence of the � BART parameter.

12It could also be of interest to evaluate how well BART does when compared to simpler models—such as an off-the-shelf
linear model, or a LASSO-regularized linear model—since such models are easier to implement and interpret. The use of
BART is justified, however, by the fact that is has consistently lower RMSE values than those simpler models. In
particular, an OLS estimation of the informed forensics model yields an RMSE of 0.458, while a LASSO of the same
model yields an RMSE of 0.456. The LASSO model was fit using the glmnet package in R using a cross-validated l
parameter (Friedman, Hastie, and Tibshirani 2010).
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prediction score seventy-five times, giving the model an out-of-sample specificity rate of 93.75%. In
addition, the precision rate of the model is 68.75, indicating that roughly 69% of the cases predicted
to be fraudulent by the model actually were. These results suggest that while the model is more
accurate in predicting non-fraudulent elections, it is not so to the point where its value is entirely or
even largely based on its ability to predict non-fraudulent election. Indeed, while far from perfect,
there seems to be a good balance here between uncovering cases of fraud where they exist while not
pointing to an abundance of “false positives.”13

A further potential objection to these results is that the superior performance of the informed
forensics model is somehow a function of the single random partition of the data set we happened
to choose. Ideally, we would like to be able to calculate a single statistic that represents the error
rates we would observe across all possible partitions (Efron and Tibshirani 1997). Unfortunately,
this is a difficult task to accomplish due to the sensitivity of the BART algorithm to the composition
of the training set. As Hastie, Tibshirani, and Friedman (2009) note,

With [. . .] methods like trees, cross-validation and bootstrap can underestimate the true error [. . .], because the

search for best tree is strongly affected by the validation set. In these situations only a separate test set will

provide an unbiased estimate of test error” (254, emphasis added).

Thus, the results presented in Table 2 represent the best estimates of the out-of-sample accuracy of
the various models, which supports our main claim. That is, cross-validation and bootstrap methods
designed to infer the error rate of a model independent of a specific training sample are generally
inaccurate. In particular, such estimates can be biased, making it far more difficult to distinguish and
arbitrate between competing models (Hastie, Tibshirani, and Friedman 2009). However, with this
caution in mind, we conducted two additional robustness checks, using well-established estimates of
generalization error (viz. a k-Fold-based measure, and a Leave-One-Out Bootstrap-based measure),
which are out-of-sample test error rates that are less dependent on the specific training sample
chosen. We find that the results presented in Table 2 hold, although measures of uncertainty are
often too high to make definitive claims about statistical distinctness. For more details on these
measures of generalization error, we refer interested readers to Online Appendix E.

4.2 Which Variables Matter?

We next turn to a slightly different question: which particular variables are most important in
allowing the fitted BART model to identify electoral fraud (as captured by our NELDA-based
proxy)? We expect that the most important factors in the fitted BART model should be a mix of
forensic tools and contextual risk factors. To evaluate the importance of each variable in the model,
we fit a BART model using the entire (n¼ 598) data set. When the number of trees is low, BART
tends to rely on the most relevant predictors when building trees, as predictors are forced to
compete to improve the model’s fit (Chipman, George, and McCulloch 2010). As a result, we
can re-estimate the BART model using a small number of trees (viz. 10) and calculate the
average share of splitting rules that involve each variable.

A variable scoring 0.10 would, on average, be used in one out of every ten binary splitting
rules—suggesting that this variable is relatively important for diagnosing fraud. On the other
hand, values closer to zero indicate that the BART model largely ignores that variable when
constructing the trees.14 Thus, higher values are obtained by variables that play a more important
role in predicting our fraud proxy.

The results, shown in Fig. 2, confirm our expectation that the fitted BART models rely on a
mix of contextual and forensic factors—although the contextual factors are clearly most critical.

13Researchers interested in increasing the sensitivity of the model at the cost of its specificity (and overall model fit) could
achieve this goal by choosing hyperpriors for the BART model that are more aggressive in the sense of allowing for
significantly less shrinkage. See Chipman, George, and McCulloch (2010) for additional discussion of these issues.

14Let Iðxi 2 TjÞ be an indicator function for whether tree j contains covariate xi. In a model fit with J trees where the

posterior is sampled P times, the posterior inclusion probability is

PJ
j¼1

PP
p¼1 Iðxi2TjÞ

JP :
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The most important forensic indicators are the distance between integers in the final two digits and
violations from the uniform distribution in the final digit. The most important contextual factors
are the level of ethnolinguistic fractionalization, national turnout rates, and the percent of the
population living in urban centers.

4.3 Uncovering Relationships

To further unpack the role of the various forensic and contextual factors in the fitted BART model,
we display the partial dependence plots for each explanatory covariate by estimating average pre-
dicted values of our fraud measure as each variable spans its observed range (or takes on all its
possible categorical values) in Figs. 3 and 4.15

4.3.1 Contextual risk factors

Figures 3 and 4 show that several of the contextual variables are independently related to our proxy
for electoral fraud. For the most part, these relationships conform with the context-rich scholarship
we reviewed above. For example, political instability (Fig. 4, top-left panel) has an important effect
on the level of fraud, as captured by our proxy, as unstable polities are estimated to have

Fig. 2 Average inclusion probabilities by variable. The points indicate the average inclusion probabilities
for each variable in a BART model fit with ten trees (n¼ 598). Higher values indicate the variable was used

more often in creating splitting rules in the binary trees (see footnote 15). Economic inequality, average
district magnitude, regime type, change in GDP, and age of democracy have been transformed into cat-
egorical variables to accommodate missing values.

15Partial dependence is estimated by making predictions for each observation for different values of the variable in
question (holding all other covariates at their actual values) across multiple draws from the posterior. See Chipman,
George, and McCulloch (2010) for additional description of this procedure. These quantities were estimated using the
pdbart function in the BayesTree package in R.
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significantly higher scores. Similarly, electoral fraud is more common in countries with extremely

high levels of ethnolinguistic fractionalization, as evidenced by the top-left panel of Fig. 3.
Surprisingly, while urbanization appears to be a relevant predictor of fraud, the top-right panel

of Fig. 3 shows that urbanization appears to have a largely negative relationship with our fraud

proxy. Low levels of urban population density are most associated with high scores on our fraud

proxy, while more urban countries are predicted to have lower values. Although this runs counter

to what previous studies have found (e.g., Domı́nguez and McCann 1998), it is consistent with the

idea that local political machines are more successful at engaging in fraudulent activities in rural

settings than in urban settings, where electoral observers can more easily pick up on such strategies

(Lehoucq 2003).16

Our model also uncovers a nonlinear relation between turnout and fraud, as very low rates

of voter turnout are predicted to have high levels of fraud as captured by our NELDA-based proxy,

Fig. 3 Partial dependence plots for seven continuous variables. Each panel shows the expected value (solid

line) and 80% credible intervals (shaded area) for the expected value of the fraud proxy as the corresponding
covariate spans its observed range. These quantities are estimated for each observation across the entire
posterior while holding all other covariates at their observed value (Chipman, George, and McCulloch 2010).

16Also surprisingly, independent electoral commissions are associated with higher values of our fraud proxy—though this
may be the result of a reversed relationship: such commissions are likely to be installed in places where electoral fraud is
prevalent.
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average rates (50%–90%) are not indicative of it, and very high rates of turnout (above 90%) are
associated with relatively high levels of our proxy. The relationship largely coheres to our theor-
etical expectation, with the exception of the effect of very high turnout. However, beyond the 90%
mark, there is a simple explanation: even in countries with compulsory voting laws, turnout in
excess of 90% is rare (Blais 2006), suggesting that such results should raise a red flag.

4.3.2 Forensic indicators

In contrast, Fig. 3 shows that—considered independently—the forensic indicators have effects that
are substantively modest and confidence intervals that are sufficiently wide to suggest their pre-
dicted relationship with fraud independent of all other measures is difficult to distinguish from a
null effect.17 However, this is not a surprising result. In line with our argument that forensic
indicators should be adjusted to account for context, the role of the forensic indicators of anom-
alous digit distributions in the BART model is better understood by examining forensic and con-
textual factors interactively.

To illustrate this point, we calculated two-way partial dependence plots for the most important
forensic indicator (the average distance between the last two digits), and one of the most important

Fig. 4 Partial dependence plots for six categorical variables. Each panel shows the expected value (solid
point) and 80% credible intervals (vertical bars) for the expected value of the fraud proxy at each observed

value of the corresponding covariate. These quantities are estimated for each observation across the entire
posterior while holding all other covariates at their observed value (Chipman, George, and McCulloch 2010).

17The wider 80% credible intervals at each end reflect the lower number of observations at these extremes.
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contextual risk factors (turnout). Figure 5 shows that the degree to which a distance between the
last pair of digits is indicative of fraud depends on the level of electoral turnout: while a very high
distance is associated with higher values of fraud, the forensic tool loses almost all of its
discriminating ability at the mid-level ranges. For instance, when turnout takes on its minimum
observed value, a change from 3.8 to 4.1 on the forensic indicator is associated with an increase of
roughly 0.03 in our fraud proxy. When turnout held at 60%, however, the same change in the
forensic indicator is associated with a change of 0.01 in the fraud proxy. While these effects are
nowhere near in magnitude to those of contextual indicators, they are important insofar as they
illustrate the benefits of using forensic tools alongside contextual risk factors.

4.4 Assessing Validity

To further validate our fraud proxy and informed forensics approach for identifying it, we
compared the predictions from our full BART model to two other notable sources for cross-
national data on fraud: the Database on Electoral Malpractice (Birch 2007, 2012) and the
Quality of Elections Database (QED) (Kelley 2012). These projects take quite different approaches
to identifying instances of electoral fraud.18 If the predictions from our combined BART model

Fig. 5 Interactive partial dependence for forensic tools and contextual risk factors. Interaction between
turnout level and the average distance between the last pair of digits in district-party vote totals. The
forensic indicator is most informative about the fraud proxy for low levels of turnout.

18That is, both databases hand code the results of election observer mission reports across a variety of on-the-ground
observable outcomes, that is, ballot stuffing, problems with election administration, voter intimidation, and so forth.
Based on these eyewitness accounts, Birch’s database codes the overall quality of the election on a four-point scale.
Kelley’s database codes two related three-point assessments, which we combine linearly to provide an overall portrait of
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correlate with these measures, it will give us further confidence that the informed forensics

approach is a valid method for identifying fraud. For each measure, we focus only on elections

where available BART estimates overlap with observations by the alternative measures. This leaves

us with twenty-three and sixty-four observations for the Electoral Malpractice and QED measures

of fraud, respectively.
As shown in Fig. 6, the predictions from the model correlate well with both alternatives,

although the correspondence is obviously imperfect. The top panel of Fig. 6 plots predictions

from the BART model against the Electoral Malpractice score. The correlation here is quite

strong (r¼ 0.83), although our BART prediction tends to group a higher proportion of the

overall observations in the least-likely fraudulent category. The bottom panel plots the BART

Fig. 6 Comparing predictions from the BART model with alternative measures. Each panel shows the
correspondence of the model predictions with measures from the Database on Electoral Malpractice (n¼ 23)

and the Quality of Elections Database (n¼ 64) (Birch 2012; Kelley 2012). The points show the position of the
country-year observations, and the lines show the bivariate linear-regression relationship.

the likely incidence of fraud: the degree of electoral misconduct and the extent of electoral misconduct. In both cases,
higher scores indicate increasingly problematic elections and, thus, both metrics should be positively correlated with the
predictions from our BART model. More information on these two metrics can be found in Online Appendix C.
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predictions against the QED measure. This correlation is more modest (0.62), but far from trivial.
Here again, relative to this alternative measure, our model’s predictions tend to place most cases in

the “least fraudulent” category. Nevertheless, we interpret these results as supportive of our
informed forensics approach generally, although reflecting some of the inherent limitations of
available data for training the model.

5 Conclusion

Electoral fraud is notoriously difficult to detect. Election monitoring puts “boots on the ground,”

but resource limitations and selection biases prevent researchers from gaining a clear picture of the
nature and extent of fraud as identified by monitors. Context-rich case studies of elections suffer
from problems of scope and generalizability. For example, the existence of regional strongmen may

lead to specific predictions about fraud in this country (say, Russia), but have little to say about
fraud in some other country (say, Argentina). Finally, the methodology that is most readily
implementable cross-nationally—electoral forensics—has developed various mathematical indica-
tors, all of which have something to tell researchers, but none of which is a “silver bullet” in

isolation.
The informed forensics approach we propose is designed to build on the strengths of extant

research on electoral fraud by ameliorating some the most obvious weaknesses of the forensics
literature and systematically incorporating insights from the rich substantive literature on
sociodemographic and institutional factors that create contexts where fraud is more likely. First,

the procedure provides a seamless—and systematic —method for adjusting purely forensic indica-
tors to specific electoral contexts. The informed forensics approach outlined above amalgamates
forensic and context-rich indicators into a single statistical model in a flexible manner. Specifically,
the BART model allows for high-level interactions such that, for example, unusual digit distribu-

tions are deemed a more credible indicator of fraud in countries with authoritarian tendencies.
Further, the BART model allows for the possibility that relationships may be nonlinear so that, for
instance, the �22BL statistic (i.e., the test statistic measuring deviations from the theoretical distri-

bution of the second digit values according to Benford’s Law) may only become indicative of fraud
at extremely high values.

Second, by building the model on a large cross-national database, the degree to which any
specific forensic indicator, contextual risk factor, or combination thereof is weighted in the
model is based on its empirical performance. The researcher’s primary role is in selecting a set of
features—forensic or contextual—to include in the analysis. BART then offers sufficient statistical

flexibility that it (largely) lets the data speak for itself insofar as we—as researchers—are not
bringing to the modeling process our a priori expectations about which forensic indicators or
risk factors are the most salient determinants of fraud. Accordingly, the BART model utilizes

electoral returns and contextual factors to identify fraud only insomuch as specific patterns (e.g.,
digit distributions or digit distributions in combination with contextual characteristics) are valid
empirical indicators of fraud cross-nationally. Because our BART model has been fit on the dis-
tribution of election characteristics across several hundred elections, each new out-of-sample

election can be evaluated against this broader international backdrop. The truly comparative
nature of the fraud assessment here is a marked improvement over methods that attempt to
evaluate a single country’s election outcome in isolation.

While our model was built on a large cross-national database, there is no reason why it could not
be used within a single country to evaluate whether electoral returns vary in their abnormality

across, say, American states or Ukrainian oblasts. As long as scholars or practitioners can obtain
observations across multiple units at the sub-geographic unit level, they can be fed into a tree-based
model just as we have fed in multiple districts at the subnational level. The only additional chal-
lenge such an approach would have is that any context-rich features one wished to include in the

trees’ approach would have to be observed at that state or oblast level. In other words, we could
compare returns in precincts within one oblast to returns in precincts in another oblast as long as we
could observe items like, for example, change in GDP per capita at the oblast level.
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Empirically, our expectations about the benefits of combining contextual and forensic indicators
are supported by our analyses. First, we demonstrated that the combined out-of-sample predictions
from BART models fit using both forensic and contextual features provide better out-of-sample
predictive power than either method does individually. Second, we showed that BART does, in
fact, rely on a mix of forensic and contextual factors in generating its predictions and that these
factors do interact in a highly nonlinear fashion. Finally, we showed that the estimates from the
BART model mirror (if imperfectly) estimates of electoral fraud generated from alternative
methodologies. Indeed, our informed forensic indicators correlate modestly with these alternative
measures, despite the fact that our indicators are far less resource-intensive in implementation.

Given the ability of this informed forensics approach to identify variations in the degree of
voting irregularities with relatively easy to obtain data, we believe it has the potential to represent
a parsimonious but effective “off-the-shelf” method of identifying potential voting irregularities
cross-nationally—even in cases where outside observers were not present at the election.
Nonetheless, it is important to note that the tool as presented above is certainly not itself a
“silver bullet” for infallibly identifying fraud. First and foremost, our results are necessarily con-
strained by available data, and particularly the lack of election data reported at lower levels of
aggregation (e.g., precincts) cross-nationally. It seems reasonable to conjecture that some of the
forensic indicators above may perform better if more fine-grained election-level data were available
for more countries. Further, the set of countries that provide even district-level data is significantly
censored, meaning that further research is needed to validate this to a broader set of electoral
circumstances as additional data become available.

Second, it may not be possible for any statistical method to provide a definitive statement of
maliciously motivated fraud—after all, irregular patterns in vote returns could occasionally be the
result of other types of (non-malicious) tabulation problems. Third, although the BART model
does have several specific advantages, there are obviously several alternative machine-learning
techniques in the literature which may result in somewhat different findings. Finally, the advantage
of semi-supervised machine-learning algorithms such as BART is that they are able to uncover
complex relationships between sets of covariates and outcomes of interest. The disadvantage,
however, is that the results depend on the degree to which the outcome of interest has been
measured appropriately. Future research, therefore, may seek to develop alternative proxy
measures of fraud to incorporate into the training of an informed forensics framework.

Despite these limitations, we argue that this general approach may be of use to political prac-
titioners, journalists, and aid agencies due to its easily implementable nature. While we may not be
able to declare an election fraudulent based solely on the model above, the approach can certainly
identify elections whose results are worthy of greater scrutiny and suspicion as a result of contextual
risk factors, unusual vote returns, or some combination of thereof. Further, due to the fact that our
BART model has been fit based on the distribution of election characteristics across several hundred
elections, each new out-of-sample election can be evaluated against this broader international
backdrop. Finally, as more and better data become available, we anticipate that the utility and
generalizability of the informed forensic approach will improve.
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