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Abstract

A primary goal of social science research is to understand how latent group mem-

berships predict the dynamic process of social network evolution. In the modeling of

international conflicts scholars hypothesize that membership in geopolitical coalitions

shapes the decision to engage in militarized conflict. Such theories explain the ways

in which nodal and dyadic characteristics affect the evolution of relational ties over

time via their effects on group memberships. To aid the empirical testing of these

arguments, we develop a dynamic model of social networks by combining a hidden

Markov model with a mixed-membership stochastic blockmodel that identifies latent

groups underlying the network structure. Unlike existing models, we incorporate co-

variates that predict node membership in latent groups as well as the direct formation

of edges between dyads. While prior substantive research often assumes the deci-

sion to engage in militarized conflict is independent across states and static over time,

we demonstrate that conflict patterns are driven by states’ evolving membership in

geopolitical blocs. Changes in monadic covariates like democracy shift states between

coalitions, generating heterogeneous effects on conflict over time and across states.
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1 Introduction

Social scientists often posit theories about the effects of latent groups of actors on relational

outcomes of interest over time. For example, international relations scholars have examined

the so-called “democratic peace” hypothesis, which states that blocs of actors — defined

by their democratic institutions — rarely engage in wars amongst themselves (e.g., Oneal

and Russett, 1999). These theories often define latent groups of actors that underlie the

structures of social networks, and stipulate how the formation and evolution of these groups

give rise to various actions and behaviors (Lorrain and White, 1971).

To aid the empirical testing of these theories, we develop a dynamic model of social

networks that extends the mixed-membership stochastic blockmodel (MMSBM; Airoldi

et al., 2008). The MMSBM is a popular generalization of the stochastic blockmodel (SBM;

Wang and Wong, 1987), which is a factor analytic model for network data characterized

by latent groups of nodes (Hoff, 2009). Unlike the SBM, the MMSBM allows nodes to

instantiate a variety of group memberships in their interactions with other nodes. Our

proposed dynamic mixed-membership stochastic blockmodel (dynMMSBM) enables the

memberships of latent groups to evolve over time, while simultaneously incorporating both

dyadic and nodal attributes that affect the formation of groups and ties.

Our approach frees applied researchers from the need to resort to a commonly used

two-step procedure to evaluate theories, whereby memberships are first estimated, and then

regressed on covariates of interest (e.g., Wasserman and Faust, 1994). Furthermore, the

proposed model allows for the prediction of group membership and future network ties

of previously unobserved nodes. To facilitate the application of our proposed model, we

develop a fast Bayesian inference algorithm by relying on a variational approximation to

the collapsed posterior (Teh et al., 2007). We offer an open-source software R package,

NetMix (available on CRAN) that implements the proposed methodology.

We use the dynMMSBM to conduct the dynamic analysis of international conflicts
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among states over the last two centuries. Political scientists have long sought to explain the

causes of interstate conflict and predict its outbreak. A prominent literature on the “demo-

cratic peace,” for example, explores whether democratic countries constitute a uniquely

peaceful community of states. A significant body of evidence attests to the low rate of

conflict among democratic dyads (e.g., Maoz and Russett, 1993; Oneal and Russett, 1999).

Others argue that the relationship is spurious, driven by impermanent geopolitical coali-

tions that generated common interests among democracies (e.g., Farber and Gowa, 1997;

Gowa, 2011). Analysts of the democratic peace typically want to account for these un-

derlying coalitions, and in particular ask whether democratic political systems encourage

states to enter the same geopolitical blocs — a question our model is designed to address.

When analyzing conflict data, the most common methodological approach is to assume

the conditional independence of state dyad-year observations given some covariates within

the generalized linear model framework (e.g., Gleditsch and Hegre, 1997; Mansfield and

Snyder, 2002; Gartzke, 2007; Dafoe et al., 2013). Recent analyses, however, have turned to

network models to relax this conditional independence assumption. Maoz et al. (2006), for

instance, use a measure of structural equivalence among dyads as a covariate in the logistic

regression. Hoff and Ward (2004) employ random effects to explicitly model network

dependence in dyadic data. Ward et al. (2007) apply the latent space model developed

by Hoff et al. (2002) to international conflict. Cranmer and Desmarais (2011) propose

and apply a longitudinal extension of the exponential random graph model (ERGM) to

conflict data. We build on this emerging body of scholarship that seeks to model complex

dependencies in the conflict network.

Methodologically, our work extends the growing literature on dynamic modeling of

social networks that exhibit some degree of stochastic equivalence. In addition to the SBM,

a variety of models are generally available to accommodate such networks. For instance,

the latent position cluster model (Handcock et al., 2007) and the recently developed ego-
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ERGM (Salter-Townshend and Brendan Murphy, 2015) incorporate equivalence classes

into the latent distance and the ERGM models, respectively. Although the more flexible

SBM (and all SBM-based models, such as ours) can capture disassortative relationships that

these other models have a harder time accommodating, they all share the highly restrictive

assumption that nodes play a single role in all their interactions.

Models like the overlapping/multiple-membership SBM (Latouche et al., 2011; Kim

and Leskovec, 2013) or the mixed-membership SBM (MMSBM; Airoldi et al., 2008) fully

address this issue by allowing nodes to belong to multiple equivalence classes. Typically,

however, these models are limited by the fact that they impose the independence of group

memberships over time and across nodes, as well as the independence of dyads conditional

on the equivalence structure. This makes it difficult to accommodate networks that display

both stochastic equivalence and some degree of heterogeneity across nodes (e.g. networks

that have very skewed degree distributions).

Subsequent work therefore focuses on relaxing some of these independence assump-

tions. For instance, Sweet et al. (2014) incorporates dyadic covariates into the MMSBM,

thus allowing for connectivity patterns that are not exclusively the result of the equivalence

structure. And White and Murphy (2016) incorporates node-specific attributes as predic-

tors of the mixed-membership vectors, thus eliminating the assumption that all nodes in

an equivalence class are exchangeable. Recent work by Yan et al. (2019) has shown that

likelihood-based estimators of these covariate effect parameters have desirable asymptotic

properties, lending further confidence in the validity of these extensions. The proposed

dynMMSBM derives from these developments, allowing for dyadic covariates at the edge-

formation stage and for nodal predictors of the mixed-membership vectors.

Even more attention has been devoted to relaxing the assumption of independence of

networks observed over time, resulting in important advances to apply the MMSBM in dy-

namic network settings (e.g. Xing et al., 2010; Ho and Xing, 2015; Fan et al., 2015). As
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most social networks have a temporal dimension, being able to model the dynamic evolu-

tion of relational outcomes is of paramount importance to applied researchers. However,

while these models offer flexible approaches to accounting for temporal dynamics, they

often rely on continuous state space approaches like the Kalman filter, making it difficult

to periodize a network’s historical evolution.

Since researchers typically periodize history into distinct “epochs” to make sense of a

phenomenon’s evolution, more discrete approaches to network dynamics would be better

suited to the typical needs of social scientists. Accordingly, the dynMMSBM relies on a

hidden Markov process to capture the evolution of equivalence class-based network forma-

tion. Furthermore, by assuming that the blockmodel itself (i.e. the matrix of edge propensi-

ties across and within latent classes) remains constant over time—so that only memberships

into classes are allowed to evolve—we avoid the issues of identification raised by Matias

and Miele (2017) that affect some of the earlier dynamic MMSBM specifications.

To the best of our knowledge, our model is the first to tackle both the need to incorporate

dyadic and nodal attributes and the need to account for temporal dynamics simultaneously,

in an effort to develop an effective model that can be readily employed in applied research.

2 The Interstate Conflict Network

The study of interstate conflict is of great interest to international relations scholars and

policy makers. The ability to predict violent political clashes has attracted a large and

growing literature on conflict forecasting (e.g., Schrodt, 1991; Beck et al., 2000; Ward et al.,

2013; Hegre et al., 2017). In addition, scholars have sought to understand how specific

political institutions, processes, and power asymmetries affect war and peace among states

(e.g., Barbieri, 1996; Oneal and Tir, 2006; Hegre, 2008).

Empirical studies of interstate conflict are most commonly conducted at the level of the

state dyad-year. In these analyses, dyad-year observations are typically assumed to be inde-

pendent conditional on the covariates included in the model (e.g., Maoz and Russett, 1993;
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Farber and Gowa, 1997; Goldsmith, 2007; Gowa, 2011; Dafoe et al., 2013). However, there

are reasons to believe conflict patterns violate this assumption. For centuries, states have

managed conflict through formal and informal coalitions. Alliances, for example, affect the

probability of conflict both among allied states and between allies and non-allies. Many

militarized conflicts (most notably, the World Wars) are multilateral in nature: states do

not decide to engage in conflict as a series of disconnected dyads, but are drawn into war

or maintain peace as a result of their membership in preexisting groups.

To address this cross-sectional and temporal dependency, we propose a network model

of interstate conflict that acknowledges the tendency of states to sort into geopolitical coali-

tions. In the dynMMSBM, nodal attributes influence the formation of unobserved groups,

and the effect of these attributes can vary over time, depending on which “epoch” of history

the interaction takes place in.

We examine the onset of militarized disputes among 216 states in the years 1816–2008,

based on the Militarized Interstate Dispute (MID) dataset version 4.1 (Ghosn and Bennett,

2003). A MID occurs when one state engages in a government-sanctioned “threat, display

or use of military force” against “the government, official representatives, official forces,

property, or territory of another state” (Jones et al., 1996, 168). Ties in the network are

formed when a new MID occurs between two states; subsequent years of the same dispute

are coded as 0. The onset of a MID is a relatively rare event, occurring in approximately

0.4% of the 805,243 state dyad-year observations in our sample.

In defining the structural components of the dynMMSBM, we begin with the stan-

dard specification used in the democratic peace literature. This research agenda is among

the most prominent theoretical debates in the study of interstate conflict, and it explores

whether democracies engage each other in conflict at lower rates than other regime types.

While recent network applications have re-examined the democratic peace debate (e.g.,

Hoff and Ward, 2004; Ward et al., 2007; Cranmer and Desmarais, 2011), the dynMMSBM
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offers some distinct advantages.

First, the structure of the dynMMSBM can accommodate many theoretical mechanisms

of the democratic peace theory about why democracies form a distinct community of states

that have achieved a “separate peace” among themselves. This behavior may arise from

the norms of compromise prevalent in democratic societies (Maoz and Russett, 1993), the

ability of democratic states to credibly signal their intentions (Fearon, 1994), or the process

by which democracies select into conflicts (Bueno de Mesquita et al., 2004).

The dynMMSBM could reveal such a community by identifying a latent group that

exhibits low rates of intra-group conflict and that democratic states are more likely to

join. Other hypotheses of the democratic peace — for example, the possibility of a similar

“dictatorial peace” among autocratic states (Peceny et al., 2002) and interactions between

democracy and power asymmetries (Bueno de Mesquita et al., 2004) — are also easily ac-

commodated by the blockmodel structure. Each latent group is associated with its own set

of nodal covariates and has unique rates of intra- and inter-group conflict.

Second, the direct inclusion of nodal variables obviates the need to restructure monadic

covariates to fit a dyadic dataset, which has exacerbated a debate in the democratic peace

literature regarding the appropriate dyadic specification of democracy (see Dafoe et al.,

2013). Finally, the dynamic implementation provides flexibility for the effect of democracy

to vary over time, as hypothesized by Farber and Gowa (1997).

3 The Proposed Methodology

In this section, we describe the proposed methodology. We first define the model and then

derive a fast estimation algorithm based on a variational approximation.

3.1 The Dynamic Mixed-Membership Stochastic Blockmodel

Suppose that we observe a social network as graph Gt = (Vt, Et) for each time period

t ∈ {1, . . . , T}, where Vt and Et represent a set of nodes and a set of directed edges,
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respectively (undirected networks are discussed later in this section). We allow node set Vt

to vary over time, since nodes may enter and exit the network at different points in time.

In our application, some countries are born into or disappear from the international system

during the study period. We use Nt to denote the number of nodes in Vt, i.e., Nt = |Vt|.

For each ordered pair of nodes pt and qt in Vt, we define an outcome variable Ypqt = 1

if there is an edge from pt to qt in Gt, i.e., (pt, qt) ∈ Et, and Ypqt = 0 otherwise. We

form an Nt × Nt sociomatrix Yt with typical element Ypqt. In addition, we observe a Jx-

dimensional vector of time-varying covariates for each node pt, denoted by xpt, as well as

a Jd-dimensional vector of time-varying covariates for each dyad (pt, qt), denoted by dpqt.

Like the SBM, the MMSBM makes the relational outcomes Ypqt a function of K latent

groups to which nodes belong. The distinctive feature of the MMBSM, however, is that

while a node can belong to one latent group when interacting with the other node of a given

dyad, different groups may be instantiated by the same node in other dyadic relationships.

Group membership also depends on whether a node is playing a role of sender or receiver.

We take this mixed membership framework one step further by allowing a node to belong

to different latent groups across time periods, even when it is interacting with the same

node in the same role (either as a sender or a receiver).

Formally, we define a K-dimensional indicator vector zpt→qt (wqt←pt) whose kth ele-

ment zpt→qt,k (wqt←pt,k) is equal to one if node pt (qt) instantiates group k when interacting

with node qt (pt) as a sender (receiver). As in the standard MMSBM, the group-by-group

propensities of edge formation can be collected in aK×K matrix B — the so called block-

model, or “role-compatibility matrix.” For the purpose of identification, and unlike other

approaches incorporating a time dimension in the MMSBM (e.g. Xing et al., 2010), we do

not allow the blockmodel to vary over time (see Matias and Miele, 2017, for a discussion

of problems associated with allowing the blockmodel to vary over time). That is, only node

memberships into groups are allowed to differ across time periods.
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We now describe the proposed model, dynMMSBM. We begin by modeling the edge

indicator Ypqt with a generalized linear model whose linear predictors consist of dyadic

time-varying covariates dpqt, as well as a fixed effect specific to the interaction between two

groups to which node pt and qt belong. This group interaction fixed effect is represented

by the corresponding element of the blockmodel B. This part of the model is given by

Ypqt ∼ Bernoulli

(
K∏

g=1,h=1

θ
zpt→qt,g×wqt←pt,h

pqtgh

)
,

θpqtgh = g−1
(
Bgh + d>pqtγ

)
,

where Bgh is the (g, h)th element of the blockmodel, γ is a Jd-dimensional vector of co-

efficients, and g(·) is a link function. In our application, and given our sampling model

for Ypqt, we use the logistic link function. By including a set of dyadic predictors dpqt, the

dynMMSBM allows tie formation probabilities to be different even for pairs of nodes that

have instantiated the same latent groups at a given point in time.

In this model, each node has a time-specific probability of instantiating a group in any

given interaction. We model these mixed-membership probability vectors, denoted πpt, as

a time-specific mixture of M separate Dirichlet distributions with common concentration

parameter ξ. We let the parameter vector of each Dirichlet distribution depend on the set

of time-varying nodal covariates xpt. This enables the prediction of group memberships

for nodes even when they are not part of the training set. Finally, we model the dynamic

network evolution by defining a first-order hidden Markov model for the M mixture com-

ponents of the the mixed-membership vectors. Thus, the coefficients of the dyadic covari-

ates in the mean of the corresponding Dirichlet distributions are allowed to be different,

depending on which hidden state the corresponding time period is in. Formally, we have,

zpt→qt ∼ Multinom(1,πpt),

wqt←pt ∼ Multinom(1,πqt),

πpt ∼
M∏
m=1

[
Dirichlet

(
exp(x>ptβm)

)]stm
,
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st ∼ Multinom(A>st−1),

s1 ∼ Multinom(λ, 1),

where stm = 1 when time period t is in hidden statem (stm = 0 otherwise), βm is a Jx×K

matrix of state-specific coefficients, A is an M ×M , row-normalized matrix of transition

probabilities, and λ is the M -dimensional vector of prior probabilities over initial states.

To complete the model, we specify the following prior distributions,

A>m ∼ Dirichlet(1, η),

Bgh ∼ N(µgh, σ
2
gh),

βkm ∼ N(µβ, σ
2
βI),

γ ∼ N(µγ, σ
2
γI),

where Am is the mth row of A, η is the hyperprior concentration parameter of a symmetric

Dirichlet distribution, and µgh and σgh are hyperprior location and scale parameters for the

intensity of affinity between corresponding groups. We choose the values of location and

scale hyperprior parameters, µβ , µγ , σ2
β and σ2

γ , to help regularize the model fit.

Thus, according to the model, the full joint distribution of data Y, latent variables Z,

W, Π, S, and parameters {B,A,β,γ} is given by,

P (Y,Z,W,Π,S,B,A,β | X,D)

=
M∏
m=1

[
P (s1m)

T∏
t=2

P (st,m | st−1,A)

]
T∏
t=1

P (Yt,Zt,Wt,Πt | st,B,βm,γ,Xt,Dt)

× P (γ)
K∏

g,h=1

P (Bgh)
M∏
m=1

[
P (Am)

K∏
k=1

P (βkm)

]
,

where

P (Yt,Zt,Wt,Πt | St,B,βm,γ,Xt,Dt)

=
∏

pt,qt∈Vt

[
P (Ypqt | zpt→qt,wqt←pt,B,γ,Dt)P (zpt→qt | πpt)P (wqt←pt | πqt)

]
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×
∏
pt∈Vt

M∏
m=1

P (πpt | st,βm,xpt)stm .

This framework can be adapted to handle undirected networks with only minor revi-

sions. In such cases, both the outcome matrix Yt and the blockmodel B will be symmetric,

as the distinction between a sender a receiver role becomes unnecessary. Accordingly, and

to avoid redundancies, products over pairs of nodes pt, qt ∈ Vt are now taken over pairs

such that qt > pt at any given time. Otherwise, the model definition remains identical.

3.2 Marginalization

As discussed in Section 3.3, we define a factorized approximation to the posterior distri-

bution of our model’s parameters in order to drastically reduce the computation time. A

typical approximating distribution would factorize over all parameters. In the true poste-

rior, however, latent variables zpt→qt (wqt←pt) and the mixed-membership parameters πpt

(πqt) are usually strongly dependent (Teh et al., 2007). Similarly, the Markov state indi-

cators st and parameters in the transition kernel A are normally strongly correlated in the

true posterior. Therefore, we marginalize out the latent mixed-membership vectors and the

Markov transition probabilities and then approximate the marginalized posterior.

We first focus on the portion of the joint density that involves Π. Define,

αptmk = exp(x>ptβkm), (1)

as the kth element of a K-dimensional vector that serves as the parameter of the Dirichlet

distribution from which mixed memberships are drawn, and let ξptm =
∑K

k=1 αptmk. We

then marginalize Π as follows,∫ T∏
t=1

∏
pt∈Vt

[∏
m

P (πpt | αptm)stm

] ∏
qt∈Vt

P (zpt→qt|πpt)P (wpt←qt | πpt) dΠpt

=
T∏
t=1

∏
pt∈Vt

M∏
m=1

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm
, (2)

where Γ(·) is the Gamma function, and Cptk =
∑

qt∈Vt(zpt→qt,k + wpt←qt,k) represents the

number of times node pt instantiates group k across its interactions with all other nodes
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qt present at time t, whether as a sender or as a receiver. Note that we replace
∑K

k=1Cptk

with 2Nt because all nodes must instantiate exactly one group when interacting with other

nodes at any given t—once as a sender and once more as a receiver. In the undirected case,

this term reduces to Nt (see Appendix A.1).

Furthermore, the transition probabilities have independent Dirichlet priors that are con-

jugate to the multinomial distribution over states at any given time. Thus, we can adopt a

similar strategy when marginalizing over the rows of A. We focus on the portion of the

joint distribution that involves A, and marginalize A as follows,∫ T∏
t=2

P (st | st−1,A)
M∏
m=1

P (Am) dA =
M∏
m=1

Γ(Mγ)

Γ(Mγ + Um)

M∏
n=1

Γ(γ + Umn)

Γ(γ)
,

where Umn =
∑T

t=2 stnst−1,m is the number of times the Markov chain transitions from

state m to state n, and Um =
∑T

t=2

∑
n stnst−1,m is the total number of times the Markov

chain transitions from m (potentially to stay at m).

Putting it all together, the marginalized posterior distribution is given by,

P (Z,W,S,B,β | X,D,Y)

∝
M∏
m=1

[
Γ(Mη)

Γ(Mη + Um)

M∏
n=1

Γ(η + Umn)

Γ(η)

]
P (s1)

T∏
t=2

M∏
m=1

∏
pt∈Vt

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm

×
T∏
t=1

∏
pt,qt∈Vt

K∏
g,h=1

(
θ
Ypqt
pqtgh(1− θpqtgh)

1−Ypqt
)zpt→qt,gwqt←pt,h

P (B)P (β)P (γ). (3)

3.3 Estimation via Variational Approximation

For posterior inference, we rely on a mean-field variational approximation to the marginal-

ized posterior distribution (Jordan et al., 1999; Teh et al., 2007). We first define a factorized

distribution of the latent variables Z, W, and S as,

Q(S,Z,W | K,Φ,Ψ) =
T∏
t=1

Q1(st | κt)
∏

pt,qt∈Vt

Q2(zpt→qt | φpt→qt)Q2(wqt←pt | ψqt←pt),

where κt, φpt→qt, and ψqt←pt are variational parameters.
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We use this factorized distribution to bound the log posterior from below. We then

iterate between finding an optimal Q̃ (the E-step) and optimizing the corresponding lower-

bound with respect to parameters B, β and γ (the M-step). Below, we provide our varia-

tional EM algorithm. Appendix A.2 contains its complete derivation.

The variational update for the parameters in the distribution of Z is given by,

φ̂pt→qt,k ∝
M∏
m=1

[
exp
[
EQ̃2

[log(αptmk + C ′ptk)]
]]κtm K∏

g=1

(
θ
Ypqt
pqtkg(1− θpqtkg)

1−Ypqt
)ψqt←pt,g

,

where C ′ptk = Cptk − zpt→qt,k and the expectation is taken over the variational distribution

of Z. This corresponds to the (unnormalized) probability vector in a multinomial distri-

bution. By symmetry, the update for ψqt←pt,k is similarly defined, and the two updates

associated with a dyad can be computed in parallel to speed up computation. Also, in order

to avoid costly computation of the Poisson-Binomial probability mass function (which is

required given the nature of our C ′ptk term), we approximate the expectations in these up-

dates by using a zeroth-order Taylor series expansion, so that EQ̃2
[log(αptmk + C ′ptk)] ≈

log
(
αptmk + EQ̃2

[
C ′ptk

])
(Asuncion et al., 2009).

For t = 2, . . . , T − 1, the variational updates for the parameters of S are given by,

κ̂tm ∝ exp
[
−EQ̃1

[log(Mη + U ′m)]
]

exp
[
κt+1,mκt−1,m EQ̃1

[log(η + U ′mm + 1)]
]

× exp
[
(κt−1,m − κt−1,mκt+1,m + κt+1,m) EQ̃1

[log(η + U ′mm)]
]

×
∏
n 6=m

exp
[
κt+1,n EQ̃1

[log(η + U ′mn)]
] ∏
n6=m

exp
[
κt−1,n EQ̃1

[log(η + U ′nm)]
]

×
∏
pt∈Vt

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

EQ̃1
[Γ(αptmk + Cptk)]

Γ(αptmk)

]
,

where U ′m = Um − st,m and U ′mn = Umn − stmst+1,n. This definition of the term U ′mn is

valid whenever m 6= n and t 6= T (for other cases, see Appendix A.2). Once again, this

corresponds to the (unnormalized) probability vector in a multinomial distribution.

To obtain the estimates of the regression parameters β, γ, and the blockmodel B, we

find optimal values with respect to the approximate lower bound, defined as the log expec-

tation of equation (3) over the variational distribution minus the entropy of the variational
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parameters. The resulting product-of-multinomials form of Q̃ (which relied only on a fac-

torizing assumption) allows us to compute the necessary expectations. To find optimal

values, we use an iterative quasi-Newton algorithm, and provide the gradients required for

this step in Appendix A.2.

Finally, we compute standard errors for all regression parameters by first sampling from

the approximate posteriors of the latent variables, and then obtaining expected values of the

log-posterior Hessian evaluated at the approximate MAP estimates of β, γ, and B.

3.4 Implementation Details

Like other mixed-membership models, there are important practical considerations when

fitting the dynMMSBM. First, as with any EM-type algorithms, finding good starting val-

ues is essential. In particular, the quality of starting values for the sufficient statistics in

the Cptk term of equation (2) proved to be highly consequential. In our experience, two

approaches worked similarly well: an initial clustering based on a spectral decomposition

of the network’s adjacency matrix (Jin et al., 2018), and taking a few samples from the

posterior of the simpler mixed-membership stochastic blockmodel (without covariates) of

Airoldi et al. (2008). We apply these strategies separately to each time-stamped network,

and resolve the ensuing label-switching problem by re-aligning the (assumed constant)

blockmodels using a graph matching algorithm (Lyzinski et al., 2014).1 Other parameters

and latent variables can be easily initialized using (generalized) linear models (in the case

of regression coefficients) or k-means clustering (in the case of sufficient statistics for the

U· terms in equation (3)).

Finally, although it is typical to use absolute change in the lower bound as a criterion for

evaluating convergence of variational Bayes models, the lack of a meaningful scale for this

quantity makes choice of a tolerance level difficult. As an alternative, we monitor whether

1For applications with a small number of latent blocks, an exact solution based on enumeration of all

group label permutations is also feasible.
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the percent change in the lower bound falls below a user-supplied tolerance level. In our

applications, we used a tolerance of 10−3 for this purpose.

3.5 A Simulation Study

Using synthetic dynamic networks, we evaluate the estimation accuracy with respect to

the mixed-membership vectors and the blockmodel matrices under three scenarios: easy,

realistic, and hard learning problems. We also examine the quality of regression coefficient

estimates, and the ability of the model to recover the parameters associated with the un-

derlying HMM. Finally, we compare the results of fitting a fully specified dynMMSBM

and fitting a separate MMSBM (without covariates) to each time period, showing the sub-

stantial gains in error reduction resulting from the use of our proposed model. Given space

limitations, the details and results of the simulation study are given in Appendix A.3.

4 Empirical Analysis

We apply the dynMMSBM to the interstate conflict network data described in Section 2.

We show that the proposed model uncovers the essential geopolitical coalitions that drive

conflict patterns and generates novel insights into the heterogeneous effect of key covari-

ates, like democracy. Finally, we demonstrate that the dynMMSBM outperforms the stan-

dard logistic regression model in forecasting future conflicts.

4.1 The Setup

We model conflict as an undirected network in which ties arise from states’ evolving mem-

bership in six latent groups. While the substantive results presented below are not condi-

tional on the number of latent groups, we found that six provided sufficient flexibility to

model different types of evolving coalitions that can be qualitatively interpreted. Six la-

tent groups also performed the best when evaluating out-of-sample prediction compared to

other numbers of groups (see Appendix A.4).
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We analyze the onset of militarized disputes among 216 states in the years 1816–2008.

We include two node-level covariates xpt — the degree of democracy in a state’s domestic

government and the state’s military capability — that are hypothesized to influence mem-

bership in the latent groups (Maoz and Russett, 1993; Hegre, 2008). We measure levels of

democracy using the variable POLITY, from the Polity IV dataset (Marshall et al., 2017).

States are assigned a polity score each year ranging from −10 to 10, with higher values

representing more democratic political institutions. The mean polity score in our sample

is −0.43. Roughly six percent of state years are assigned the minimum score of −10, and

16% receive the maximum of 10. Moreover, to measure the military capability of states

(MILITARY CAPABILITY), we use version 5.0 of the composite index (CINC scores,

Singer et al., 1972), and take the log to account for its skewed distribution. The association

between these covariates and the latent group memberships is assumed to depend on two

hidden Markov states.

In addition, we include four dyadic variables dpqt that are expected to predict conflicts

beyond the effects of the equivalence classes induced by the blockmodel. These include a

dichotomous indicator for a formal alliance (ALLIANCE) between states in a given year;

data on alliances comes from version 4.1 of the COW Formal Alliances dataset (Gibler,

2009). We also include geographic distance (DISTANCE) and the presence of a contiguous

border (BORDER) between states (Stinnett et al., 2002). A count of common memberships

in international organizations (IO CO-MEMBERSHIPS) addresses the possibility that in-

teraction in these organizations decreases conflict (Oneal and Russett, 1999). Following

the literature, a count of years since the last militarized dispute between each dyad and a

cubic spline control for further temporal trends (Beck et al., 1998). Finally, to account for

the missing values of some predictors, we rely on a missing-indicator approach, adding

dummy variables that indicate which observations have missing values in the correspond-

ing variable, and replacing all missing values with zero.
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Figure 1: Estimated blockmodel in the conflict network. The figure displays a represen-
tation of the estimated blockmodel in the form of a network graph. The size of the nodes
(circles) in the figure reflect the frequency with which countries instantiate membership in
each group. Weighted edges (lines) represent the probability of conflict between groups,
with darker edges indicating a higher propensity to start a conflict.

The model is fitted using our open-source software package NetMix. Estimation took

one hour and sixteen minutes on a laptop computer with a 1.6Ghz CPU, converging after

25 EM iterations. Note that the estimation time drops to approximately 50 minutes without

the optional Hessian computation, which calculates standard errors for the blockmodel,

monadic, and dyadic coefficients.

4.2 Memberships in the Latent Groups

The dynMMSBM allows us to characterize membership in each latent group as well as

the expected relationships between them. Figure 1, which depicts each latent group as a

node on a graph, summarizes which groups tend to be instantiated most often. The figure

also shows the estimated rates of conflict between groups, using darker-shaded edges to

indicate a higher propensity of conflict onset. Table 3 of Appendix A.4 presents the exact

blockmodel estimates used to create this figure.

The size of the nodes (circles) in the figure reflects the frequency with which states
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instantiate membership in each group. Group 6 is the most populous group, representing

27% of state-year observations in the sample. Group 5 is the second largest (24%), followed

by Groups 2 (19%), 3 (13%), 1 (13%), and 4 (3%).

Group 1 has elevated rates of inter-group conflict with groups 2 and 4, as evidenced

by the darker shade of the edge between them in the figure. When a state from Group 1

interacts with a state from Group 2, there is a 6.2% chance that a militarized dispute will

occur between them. Probing the mixed-membership vectors of individual states reveals

that these two groups capture geopolitical divisions between blocs of powerful states. The

United States, United Kingdom, Germany, and their Western European allies often in-

stantiate Group 1, while China, Russia, and other Eastern bloc states tend to instantiate

membership in Group 2.

Other groups also reveal important structure in the international system. Group 3 in-

cludes many states that maintained a foreign policy of neutrality throughout much of the

20th century (e.g., Ireland, Sweden, Switzerland, and Costa Rica). Despite their formally

neutral stance, these states maintained close diplomatic relations with the Western allies

that populate Group 1. According to the blockmodel, these states have low rate of conflict

with Group 1 (1.2%) and are less bellicose overall. Group 4 includes many states that were

caught in the crossfire of the intense geopolitical conflict between the Western and East-

ern coalitions represented by Groups 1 and 2. Afghanistan, Cambodia, and Yugoslavia are

among the states with high membership in Group 4 that were sites of proxy conflicts during

the Cold War period. Group 5 is composed of many autocratic states in the Middle East

and Africa, while Group 6 features small or geographically remote states.

A closer evaluation of estimated memberships during the Cold War period lends further

credence to the validity of the model. As noted earlier, the Cold War period was defined

by a geopolitical rivalry between an Eastern bloc, led by the Soviet Union, and a Western

bloc, led by the United States and its NATO allies. To see if the dynMMSBM can recover
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Figure 2: Membership in Latent Groups over Time. The figure shows the average pro-
portion of membership in six latent groups for each year from 1816–2010.

the underlying geopolitical structure of the Cold War era, we identify the 15 states with the

highest average membership probability in each latent group during the period of 1950–

1990. We do this by estimating 1
T

∑1990
t=1950 πptg for every state given each latent group g.

The states with the highest membership in each group are listed in Table 4 of Appendix A.4.

The distribution of states across the groups is consistent with presence of competing

geopolitical coalitions during the Cold War. Group 1 contains the major NATO allies, such

as the United States, United Kingdom, Germany, Italy and Canada. Non-NATO members

that sided with the NATO, including Japan and Australia, also instantiate Group 1 at high

rates. Group 2 consists of the Soviet Union and its allies in the Eastern bloc (Russia/Soviet

Union, China, East Germany, Czechoslovakia, and Romania). The estimated blockmodel

indicates the competing coalitions experience abnormally high rates of conflict.

4.3 The Dynamics of Membership

The dynMMSBM further allows us to examine how latent group membership changes over

time. Figure 2 displays the evolution of group membership over time. Latent groups expand
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Figure 3: Average Node Membership over Time, Select States. The figure shows, for six
states, the average rate of membership in four latent groups in each year the state is present
in the network.

and contract as states move in and out of geopolitical coalitions. Groups 1 and 2 are more

prominent in earlier time periods, when the state system was composed of fewer states and

great powers frequently resorted to war to settle political conflicts. In the post-World War

II era, decolonization and the attendant increase in independent states generates increased

membership in Group 6, a cluster that represents small states that tend to avoid military

conflict. The most peaceful clusters, Group 3 and 6, increase in membership after World

War II, when norms against military aggression began to consolidate.

Figure 3 displays latent group membership by year for a select group of states. There is

significant variation across states and within some states over time. The United States and

United Kingdom have high membership in Group 1, as discussed above. US membership

in Group 1 is stable over the period of the study, while the UK consolidates its membership

in this coalition after transitioning to a democratic political system. Russia’s membership

is overwhelmingly dominated by Group 2. At the end of the Cold War, the implosion of

the Soviet system shifts Russia slightly to Group 1 before reverting fully back to Group 2.
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Predictor Dyadic Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

INTERCEPT 0.402 0.672 −4.758 −4.430 −3.462 −25.802
(0.062) (0.058) (0.065) (0.068) (0.068) (0.051)

POLITY 0.157 −0.054 0.136 −0.022 −0.087 −0.510
(0.004) (0.002) (0.003) (0.004) (0.002) (0.006)

MILITARY 0.641 0.487 −0.328 −0.147 −0.292 −3.314
CAPABILITY (0.012) (0.010) (0.010) (0.010) (0.008) (0.030)

BORDERS 2.500
(0.404)

DISTANCE 0.000
(0.402)

ALLIANCE 0.283
(0.406)

IO CO-MEMBERS 0.000
(0.402)

PEACE YRS −0.149
(0.402)

N nodes: 216; N dyads: 805, 243; N time periods: 192
Lower bound at convergence: −155, 058.1

Table 1: Estimated Coefficients and their Standard Errors. The table shows the esti-
mated coefficients (and standard errors) of the two monadic predictors for each of six latent
groups, as well as those of the dyadic predictors for edge formation. We present the results
from the first Markov state, which accounts for almost the entire time period. The estimated
coefficients for cubic splines and indicators for variable missingness are not shown.

Japan, Iran, and Iraq further demonstrate how political shocks like revolution and for-

eign intervention are reflected in the evolution of latent membership. Japan experiences a

sharp shift from Group 2 to Group 1 upon its loss in World War II and subsequent occupa-

tion by American forces. Iranian membership transitions quickly from Group 5 to Group 2

around the time of the Iranian Revolution in 1979, consistent with the anti-American pos-

ture of the Khomeini government. In Iraq, the sudden shift to Group 1 in 2003 reflects the

invasion by the US and allied countries and the installation of a friendly government.

4.4 Covariate Effects

The dynMMSBM also enables the examination of covariate relations that can help charac-

terize the nature of each estimated latent group. The upper panel of Table 1 displays co-

efficient estimates for the monadic covariates POLITY and MILITARY CAPABILITY.

The estimates represent the effect of each covariate on the log-odds of membership in each

latent group. We display the coefficients only for Markov state 1, since almost the entire

time period under study, i.e., 95.4%, is estimated to derive from this state.
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Democratic regimes (i.e., those with high POLITY scores) are most likely to instanti-

ate membership in Groups 1 and 3. This is consistent with the interpretation of Group 1 as

the Western alliance of liberal democracies during the Cold War, and Group 3 as Western-

leaning neutral states. Autocratic regimes sort into Group 6 at the highest rate. Greater

military capability is positively associated with membership in Groups 1 and 2 and nega-

tively associated with membership in the other clusters.

In addition to obtaining estimates for the coefficients in our model, we can also predict

how the probability of edge formation changes as a function of the node’s monadic covari-

ates. In the generative process of the model, group memberships are instantiated for each

dyad in each time period. As a result, states in the conflict network are assigned to a latent

group each time they interact with another state in a given year. Because the probability of

edge formation depends on the group membership of both nodes in a dyad, a change in one

node’s monadic predictor will yield heterogeneous effects across dyads, nodes, and time.

For example, consider the change in predicted conflict propensity when each node’s

POLITY score is increased by one standard deviation (6.78). During this exercise, we allow

POLITY scores to increase only up to the maximum value (10) so that a POLITY score

never exceeds this value. The overall average effect of this change on the probability of

edge formation, averaging all dyadic interactions and time periods, is positive but negligible

in size: 0.0001. Thus, increasing the degree of democracy in a country results in a minor

increase in conflict, given the underlying geopolitical coalitions throughout the time period.

There is, however, a significant amount of heterogeneity in this effect across states and

over time. Figure 4 shows, for each state, the difference in expected probability of interstate

conflict due to an increase of one standard deviation in POLITY score. Some states (such

as India, Russia, and the United States) are predicted to be more peaceful, on average, if

they become more democratic. Many others, however, are estimated to be more conflict-

prone (e.g., Syria, Iraq, Afghanistan, Cuba, and Saudi Arabia), An increase in polity shifts
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Figure 4: Estimated Effects of Covariate Shift in Polity over Time, Select States.
The figure shows the estimated change in the probability of interstate conflict if a state’s
POLITY score is increased by one standard deviation (6.78) from its observed value.

these states into different latent groups that are more conflictual, on average.

The effect of democracy varies due to the latent group structure of the model. In gen-

eral, shifts in monadic predictors will generate effects that are non-linear and contingent

upon the existing group membership of the node in question and the other nodes in the

network. Figure 5 looks within states to gauge the effect of the shift in POLITY over

22



1850 1900 1950 2000

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

United States

E
ffe

ct
 o

f P
ol

ity

1850 1900 1950 2000

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

Russia

E
ffe

ct
 o

f P
ol

ity

1850 1900 1950 2000

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

China

E
ffe

ct
 o

f P
ol

ity

1850 1900 1950 2000

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

UK

E
ffe

ct
 o

f P
ol

ity

1850 1900 1950 2000

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

Turkey

E
ffe

ct
 o

f P
ol

ity

1850 1900 1950 2000

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

Brazil

E
ffe

ct
 o

f P
ol

ity

Figure 5: Effect of Shift in Polity over Time, Select States. The figure shows the esti-
mated change in the probability of interstate conflict over time if a state’s POLITY score is
increased by one standard deviation (6.78) from its observed value.
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Figure 6: Estimated Aggregate Effect of Shift in Polity over Time. The figure shows
the estimated average change in the probability of interstate conflict when states’ POLITY
scores are increased by one standard deviation (6.78).

time, revealing additional heterogeneity. Finally, Figure 6 displays the average effect for

each year in the time period. An increase in democracy induces more conflict, on average,

throughout most of the sample. The effect is only consistently negative during first World

23



War and the interwar period, hitting its nadir in 1918 (−0.002). The impact of polity is

attenuated in recent years, when the estimated effect of increasing polity approaches zero.

Finally, dyadic predictors operate outside the latent group membership structure, di-

rectly influencing the probability of conflict among states. In a sense, they serve as con-

trols for alternative networks defined on the same node set. The dyadic coefficient estimates

appear in the bottom panel of Table 1. Consistent with existing work, sharing a border sig-

nificantly increases the likelihood of conflict. Greater geographic distance between states,

formal alliances, and joint membership in international organizations have no statistically

discernible effect on conflict propensity, once the blockmodel structure is accounted for.

4.5 Comparison with Logistic Regression

Finally, we compare the forecasting performance of the dynMMSBM to that of the stan-

dard logistic regression model prevalent in the democratic peace literature. We fit this

regression model to the same interstate conflict data organized in the dyad-year format

using the identical set of predictors. The only difference is that, in keeping with the con-

vention in the literature, we transform the monadic variables (POLITY and MILITARY

CAPABILITY) to a dyadic structure. We follow the conventional approach to specifying

POLITY by including two separate variables measuring the democracy level of the less

democratic country and that of the more democratic country in a dyad (e.g., Dafoe et al.,

2013). The MILITARY CAPABILITY variable is restructured as the ratio of the more

powerful state’s military capability to the less powerful state’s military capability.

We then conduct an out-of-sample validation exercise on the years 2009-2010, which

were excluded from our initial sample. We follow Goldstone et al. (2010) in using a 2-year

window for out-of-sample validation. We use the parameters of the dynMMSBM and logit

models to predict the onset of conflict for dyad-years in the 2009-2010 period. Because the

models include peace years and cubic splines as predictors, we impute these variables based

on estimated probabilities of conflict in the out-of-sample set. To impute, we first forecast
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conflict in the year 2009 and then sample from the predicted probabilities of conflict to

update the peace years variable for each dyad. For the dynMMSBM, we let the network

evolve according to the estimated Markov transition probabilities.

We evaluate the predictive accuracy of both models by comparing their predictions with

the observed pattern of conflict in 2009-2010. Figure 12 in the Appendix A.4 displays the

receiver operating curves (ROCs) for each model. The dynMMSBM slightly outperforms

the logit model in out-of-sample prediction. The area under the ROC curve is 0.975 for the

dynMMSBM and 0.963 for the logistic regression model.

5 Conclusion

We have introduced the dynMMSBM, a generalization of the mixed-membership stochas-

tic blockmodel that incorporates dyadic and nodal attributes, and accounts for episodic

temporal evolution of networks using a hidden-Markov process. The proposed model en-

ables researchers to evaluate dynamic theories about the role of individual characteristics

on the generation of relational outcomes when abstract groups of actors are the driving

force behind tie formations. The dynMMSBM also helps identify periods in time when a

network exhibits distinctive patterns of interactions among actors.

Using a network defined by almost 200 years of militarized interstate disputes in the

international system, our model uncovers previously understudied spatial and temporal het-

erogeneity in the so called “democratic peace,” whereby regime type is expected to affect

the likelihood that any two countries engage in militarized actions against each other. Our

model also uncovers the evolving nature of unobserved geopolitical coalitions, with mem-

berships that conform to theoretical expectations — with liberal democracies aligned in

one bloc, and more authoritarian regimes aligned in another.

This paper provides applied researchers with a model that can accommodate a vari-

ety of theorized relationships for dynamic network outcomes that display some form of

stochastic equivalence. We make available the open-source R software package NetMix
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that implements the proposed methodology. In the future, we plan to further extend the

model’s applicability to a variety of outcome variable types. Similarly, and given their

prevalence in social scientific research, we plan to extend the model to accommodate bi-

partite or affiliation networks.
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lated Erdös-Rényi graphs.” Journal of Machine Learning Research, 15, 3513–3540.

Mansfield, E. D. and Snyder, J. (2002), “Incomplete democratization and the outbreak of

military disputes,” International Studies Quarterly, 46, 529–549.

Maoz, Z., Kuperman, R. D., Terris, L., and Talmud, I. (2006), “Structural equivalence and

international conflict: A social networks analysis,” Journal of Conflict Resolution, 50,

664–689.

Maoz, Z. and Russett, B. (1993), “Normative and structural causes of democratic peace,

1946–1986,” American Political Science Review, 87, 624–638.

Marshall, M., Gurr, T. R., and Jaggers, K. (2017), “Polity IV Project, Political Regime

Characteristics and Transitions, 1800-2016.” Polity IV Project-Dataset Users’ Manual.

Matias, C. and Miele, V. (2017), “Statistical clustering of temporal networks through a

dynamic stochastic block model,” Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology), 79, 1119–1141.

Oneal, J. R. and Russett, B. (1999), “The Kantian peace: The pacific benefits of democracy,

interdependence, and international organizations, 1885–1992,” World politics, 52, 1–37.

Oneal, J. R. and Tir, J. (2006), “Does the Diversionary Use of Force Threaten the Demo-

cratic Peace? Assessing the Effect of Economic Growth on Interstate Conflict, 1921–

2001,” International Studies Quarterly, 50, 755–779.

29



Peceny, M., Beer, C. C., and Sanchez-Terry, S. (2002), “Dictatorial Peace?” American

Political Science Review, 96, 15–26.

Salter-Townshend, M. and Brendan Murphy, T. (2015), “Role analysis in networks using

mixtures of exponential random graph models,” Journal of Computational and Graphi-

cal Statistics, 24, 520–538.

Schrodt, P. A. (1991), “Prediction of Interstate Conflict Outcomes Using a Neural Net-

work,” Social Science Computer Review, 9, 359–380.

Singer, J. D., Bremer, S., and Stuckey, J. (1972), “Capability Distribution, Uncertainty, and

Major Power War, 1820-1965,” Peace, war, and numbers, 19, 48.

Stinnett, D. M., Tir, J., Diehl, P. F., Schafer, P., and Gochman, C. (2002), “The Correlates

of War (COW) Project Direct Contiguity Data, version 3.0,” Conflict Management and

Peace Science, 19, 59–67.

Sweet, T., Thomas, A., and Junker, B. (2014), Handbook of mixed membership models and

their applications, CRC Press, chap. Hierarchical mixed membership stochastic block-

models for nultiple networks and experimental interventions, pp. 463–488.

Teh, Y. W., Newman, D., and Welling, M. (2007), “A collapsed variational Bayesian in-

ference algorithm for latent Dirichlet allocation,” in Advances in Neural Information

Processing Systems, pp. 1353–1360.

Wang, Y. J. and Wong, G. Y. (1987), “Stochastic blockmodels for directed graphs,” Journal

of the American Statistical Association, 82, 8–19.

Ward, M. D., Metternich, N. W., Dorff, C. L., Gallop, M., Hollenbach, F. M., Schultz, A.,

and Weschle, S. (2013), “Learning from the Past and Stepping into the Future: Toward a

New Generation of Conflict Prediction,” International Studies Review, 15, 473–490.

30



Ward, M. D., Siverson, R. M., and Cao, X. (2007), “Disputes, Democracies, and Depen-

dencies: A Reexamination of the Kantian Peace,” American Journal of Political Science,

51, 583–601.

Wasserman, S. and Faust, K. (1994), Social network analysis: Methods and applications,

vol. 8, Cambridge university press.

White, A. and Murphy, T. B. (2016), “Mixed-membership of experts stochastic block-

model,” Network Science, 4, 48–80.

Xing, E. P., Fu, W., and Song, L. (2010), “A state-space mixed membership blockmodel

for dynamic network tomography,” The Annals of Applied Statistics, 4, 535–566.

Yan, T., Jiang, B., Fienberg, S. E., and Leng, C. (2019), “Statistical inference in a directed

network model with covariates,” Journal of the American Statistical Association, 114,

857–868.

31



A Appendix

A.1 Marginalizing the membership vectors and the transition proba-

bilities

In this appendix, we show how to marginalize Π.∫
· · ·
∫ T∏

t=1

∏
p∈Vt

[
M∏
m=1

P (πpt | αptm)stm

] ∏
q∈Vt

P (zp→q,t | πpt)P (wp←q,t|πpt) dπ1 . . . dπNt

=
T∏
t=1

∏
p∈Vt

∫ M∏
m=1

[P (πpt | αptm)]stm
∏
q∈Vt

P (zp→q,t | πpt)P (wp←q,t|πpt) dπpt

=
T∏
t=1

∏
p∈Vt

∫ M∏
m=1

[
Γ(ξptm)∏K

k=1 Γ(αptmk)

K∏
k=1

π
αptmk−1
ptk

]stm ∏
q∈Vt

K∏
k=1

π
zp→q,t,k

ptk π
wp←q,t,k

ptk dπpt

=
T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξptm)∏K

k=1 Γ(αptmk)

]stm

×
∫ K∏

k=1

π
∑M

m=1 stmαptmk−1
ptk

∏
q∈Vt

K∏
k=1

π
zp→q,t,k

ptk π
wp←q,t,k

ptk dπpt

As they share a common base, we can simplify the products and defineCptk =
∑

q∈Vt(zp→q,t,k+

wp←q,t,k) to show that the above equation is equivalent to,

T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξptm)∏K

k=1 Γ(αptmk)

]stm ∫ K∏
k=1

π
∑M

m=1 stmαptmk+Cptk−1
ptk dπpt

The integrand can be recognized as the kernel of a Dirichlet distribution. As the integral

is over the entire support of this Dirichlet, we can easily compute it as the inverse of the

corresponding normalizing constant,

T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξptm)∏K

k=1 Γ(αptmk)

]stm ∏
k Γ(

∑M
m=1 stmαptmk + Cptk)

Γ(
∑M

m=1 stmξptm + 2Nt))

where the sum of Cptk over groups k is equal to twice the number of nodes (as nodes

must instantiate at least one group in each of interactions, once as a sender and once again

as a receiver) in directed networks. A simple reorganization of factors (along with the

fact that st,m is an indicator vector, whereby
∑

m stmx =
∏

m x
stm) yields equation (2) in

Section 3.2.
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A.2 Details of the Variational EM Algorithm

A.2.1 E-step

E-step 1: Z and W

To obtain the updates of the φp→q,t variational parameters, we begin by restricting equa-

tion (3) to the terms that depend only on zp→q,t (for specific p and q nodes in Vt) and taking

the logarithm of the resulting expression,

logP (Y,Z,W,S,B,β,γ | X,D)

= zp→q,t,k

K∑
g=1

wq←p,t,g {Ypqt log(θpqtkh) + (1− Ypqt) log(1− θpqtkh)}

+
M∑
m=1

stm log Γ(αptmk + Cptg) + const.

Now, note that Cptk = C ′ptk + zp→q,t,g and that, for x ∈ {0, 1}, Γ(y + x) = yxΓ(y). Since

the zp→q,t,k ∈ {0, 1}, we can re-express log Γ(αptmk +Cptk) = zp→q,t,k log(αptmk +C ′ptk)+

log Γ(αptmk + C ′ptk) and thus simplify the expression to,

zp→q,t,k

K∑
g=1

wq←p,t,g {Ypqt log(θpqtkg) + (1− Ypqt) log(1− θpqtkg)}

+ zp→q,t,k

M∑
m=1

stm log
(
αptmk + C ′ptk

)
+ const.

We proceed by taking the expectation under the variational distribution Q̃:

EQ̃{logP (Y,Z,W, s,B,β,γ | D,X)}

= zp→q,t,g

K∑
g=1

EQ̃2
(wq←p,t,g)

(
Ypqt log(θpqtkg) + (1− Ypqt) log(1− θpqtkg)

)
+ zp→q,t,g

M∑
m=1

EQ̃1
(stm) EQ̃2

{
log
(
αptmk + C ′ptk

)}
+ const.

The exponential of this expression corresponds to the (unnormalized) parameter vector of

a multinomial distribution Q̃2(zp→q,t | φp→q,t). The update for wq←p,t is similarly derived.
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E-step 2: S

Isolating terms in Equation 3 that are not constant with respect to stm for a specific t 6= 1

and m, and rolling all other terms into a const., we have

P (Y,Z,W, s,B,β,γ | D,X) = Γ(Mη + Um)−1
M∏
m=1

M∏
n=1

Γ(η + Umn)
∏
p∈Vt

[
K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm

+ const.

To isolate terms that depend on stm for specific t > 1, m and n 6= m, define the following

useful quantities:

U ′m = Um − stm

U ′mm = Umm − st−1,mstm − stmst+1,m

U ′nm = Unm − st−1,mstm

U ′mn = Umn − stmst+1,n

Focusing on the terms involving Um and Umn, and working on a typical case in which

1 < t < T , we can isolate parts that do not depend on stm by again recalling that, for

x ∈ {0, 1}, Γ(y + x) = yxΓ(y):

Γ (Mη + stm + U ′m)
−1

Γ(η + st+1,mstm + st−1,mstm + U ′mm)

×
M∏
n 6=m

Γ(η + st+1,nstm + U ′mn)Γ(η + stmst−1,n + U ′nm)

= (Mη + U ′m)−stmΓ(Mη + U ′m)−1
{

(η + U ′mm + 1)st+1,mst−1,m(η + U ′mm)st−1,m−st−1,mst+1,m+st+1,m
}stm

× Γ(η + U ′mm)
M∏
n6=m

(η + U ′mn)st+1,nstmΓ(η + U ′mn)
M∏
n6=m

(η + U ′nm)stmst−1,nΓ(η + U ′nm)

at which point all Γ(·) terms are constant with respect to stm and can be rolled into the

normalizing constant so that

P (Y,Z,S,B,β,γ | D,X)

= (Mη + U ′m)−stm
{

(η + U ′mm + 1)st+1,mst−1,m(η + U ′mm)st−1,m−st−1,mst+1,m+st+1,m
}stm
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×
M∏
n 6=m

(η + U ′mn)st+1,nstm(η + U ′nm)stmst−1,n

×
∏
p∈Vt

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm
+ const.

Taking the logarithm and expectations under the variational distribution Q̃ with respect to

all variables other than stm, we have,

log κ̂tm = −stm EQ̃1
[log(Mη + U ′m)] + stmκt+1,mκt−1,m EQ̃1

[log(η + U ′mm + 1)]

+ stm(κt−1,m − κt−1,mκt+1,m + κt+1,m) EQ̃1
[log(η + U ′mm)]

+ stm

M∑
n 6=m

κt+1,n EQ̃1
[log(η + U ′mn)]

+ stm

M∑
n 6=m

κt−1,n EQ̃1
[log(η + U ′nm)] + stm

∑
p∈Vt

[
Γ(ξptm)

Γ(ξptm + 2Nt)

]

+ stm
∑
p∈Vt

K∑
k=1

EQ̃

[
log

[
Γ(αptmk + Cptk)

Γ(αptmk)

]]
+ const.

This corresponds to a multinomial distribution Q̃1(st|κtm), such that the mth element of

its parameter vector is

κ̂tm ∝ exp
[
−EQ̃1

[log(Mη + U ′m)]
]

exp
[
κt+1,mκt−1,m EQ̃1

[log(η + U ′mm + 1)]
]

× exp
[
(κt−1,m − κt−1,mκt+1,m + κt+1,m) EQ̃1

[log(η + U ′mm)]
]

×
∏
n6=m

exp
[
κt+1,n EQ̃1

[log(η + U ′mn)]
]

exp
[
κt−1,n EQ̃1

[log(η + U ′nm)]
]

×
∏
p∈Vt

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

EQ̃1
[Γ(αptmk + Cptk)]

Γ(αptmk)

]

which must be normalized. When t = T , the term simplifies to

κ̂Tm ∝ exp
[
−EQ̃1

[log(Mη + U ′m)]
] M∏
n=1

exp
[
κT−1,m EQ̃1

[log(η + U ′nm)]
]

×
∏
p∈VT

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

EQ̃1
[Γ(αpTmk + CpTk)]

Γ(αpTmk)

]

As before, the expectations can be approximated using a zero-order Taylor expansion.
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A.2.2 M-step

Lower Bound

We first provide the expression for the lower bound,

L(Q̃) = EQ̃[logP (Y,Z,W, s,B,β | X)]− EQ̃[log Q̃(s,Z,W | K,Φ,Ψ)]

= log(P (s1)) + log Γ(Mη)−
M∑
m=1

EQ̃[log Γ(Mη + Um)]

+
M∑
m=1

M∑
n=1

EQ̃[log Γ(η + Umn)]− log Γ(η)

+
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

[
log Γ (ξptm)− log Γ (ξptm + 2Nt)

]

+
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

K∑
k=1

[
E[log Γ(αptmk + Cptk)]− log Γ(αptmk)

]

+
T∑
t=1

∑
(p,q)∈Et

K∑
g,h=1

φp→q,t,gψq←p,t,h {Ypqt log θpqtgh + (1− Ypqt) log(1− θpqtgh)}

−
K∑

g,h=1

(Bgh − µgh)2

2σ2
gh

−
Jd∑
j=1

(γj − µγ)2

2σ2
γ

−
M∑
m=1

K∑
k=1

Jx∑
j=1

(βmkj − µβ)2

2σ2
β

−
T∑
t=1

M∑
m=1

κtm log κtm −
T∑
t=1

M∑
m=1

∑
(p,q)∈Et

K∑
k=1

{φp→q,t,k log φp→q,t,k − ψq←p,t,h log(ψq←p,t,k)}

M-step 1: update for B

Restricting the lower bound to terms that contain Bgh, we obtain

L(Q̃) =
T∑
t=1

∑
p,q∈Et

K∑
g,h=1

φp→q,t,gψq←p,t,h{Ypqt log θpqtgh + (1− Ypqt) log(1− θpqtgh)}

−
K∑

g,h=1

(Bgh − µgh)2

2σ2
gh

+ const.

We optimize this lower bound with respect to Bgh using a gradient-based numerical opti-

mization method. The corresponding gradient is given by,

∂LBgh

∂Bgh

=
T∑
t=1

∑
p,q∈Et

φp→q,t,gψq←p,t,h (Ypqt − θpqtgh)−
Bgh − µBgh

σ2
Bgh
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M-step 2: update for γ

Restricting the lower bound to terms that contain γ, and recalling that θpqtgh = [1 +

exp(−Bgh − dpqtγ)]−1, we have

L(Q̃) =
T∑
t=1

∑
p,q∈Et

K∑
g,h=1

φp→q,t,gψq←p,t,h {Ypqt log θpqtgh + (1− Ypqt) log(1− θpqtgh)}

−
Jd∑
j

(γj − µγ)2

2σ2
γ

+ const.

To optimize this expression with respect to γj (the jth element of the γ vector), we again

use a numerical optimization algorithm based on the following gradient,

∂L(Q̃)

γj
=

T∑
t=1

∑
p,q∈Et

K∑
g,h=1

φp→q,t,gψq←p,t,hdpqtj (Ypqt − θpqtgh)−
γj − µγ
σ2
γ

M-step 3: update for βm

Let αptmk = exp
(
x>ptβkm

)
and ξptm =

∑K
k=1 αptmk. To find the optimal value of βkm, we

roll all terms not involving the coefficient vector into a constant:

L(Q̃) =
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

[log Γ(ξptm)− log Γ(ξptm + 2Nt)]

+
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

K∑
k=1

[
EQ̃2

[log Γ(αptmk + Cptk)]− log Γ(αptmk)
]

−
K∑
k=1

M∑
m=1

Jx∑
j=1

(βmkj − µβ)2

2σ2
β

+ const.

No closed form solution exists for an optimum w.r.t. βmkj , but a gradient-based algorithm

can be implemented to maximize the above expression. The corresponding gradient with

respect to each element of βmk is given by,

∂L(Q̃)

∂βmkj
=

T∑
t=1

κtm
∑
p∈Vt

αptmkxptj

(
EQ̃2

[ψ̆(αptmk + Cptk)− ψ̆(αptmk)]

+
[
ψ̆(ξptm)− ψ̆(ξptm + 2Nt)

])
− βmkj − µβ

σ2
β
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where ψ̆(·) is the digamma function. Once again, we can approximate expectations of non-

linear functions of random variables using a zeroth-order Taylor series expansion. As is the

case of the multinomial logit model, we set β1,m ≡ 0 ∀m, making group 1 a reference for

identification purposes.

A.3 A Simulation Study

Our synthetic networks are composed of 100 nodes observed over t ∈ {1, . . . , 9} time

periods, and are constructed as follows:

1. For each node pt and dyad pqt at time t > 1, generate a single monadic and dyadic

predictor using a random walk, so that xpt = xp,t−1 + εxt, dpqt = dpq,t−1 + εdt, with

xp1 ∼ N (0, 2), dpq,1 ∼ N (0, 2), and εxt ∼ N(0, 1), εdt ∼ N(0, 1).

2. For each node at time t, sample a 2-dimensional mixed-membership vector from a

2-component mixture of Dirichlet distributions, so that

πpt ∼
2∏

m=1

[
Dirichlet

(
exp

(
x>ptβm

))]stm
where xpt = [1 xpt]

>, and stm indicates a state m ∈ {1, 2} of the hidden Markov

process, such that st1 = 1 for t ∈ {1, . . . , 5}, st2 = 1 for t ∈ {6, . . . , 9}, and stm = 0

otherwise (i.e. there is a changepoint in the underlying left-to-right HMM between

time-points 5 and 6).

3. For each node pt and qt in directed dyad pqt, sample a pair of group memberships

zpt→qt ∼ Categorical (πpt) and wqt←pt ∼ Categorical(πqt)

4. Finally, and for the same dyad, sample an edge

Ypqt ∼ Bernoulli
(
logit−1

(
Bzpt→qt,wqt←pt + γ1dpqt

))
where γ1 = 0.25.
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To explore the conditions under which the model performs best, as well as those under

which learning the model’s various parameters can be particularly challenging, we refine

this data-generating process by defining three sets of values forB and β designed to gener-

ate easy, realistic, and hard learning scenarios. They differ in the extent to which member-

ships are truly mixed (with more clearly defined memberships being easier to learn), and

with respect to the extent to which the blockmodels generate distinct equivalence classes

of nodes (with more clearly defined block structures being easier to learn). Accordingly,

each scenario’s DGP is completed using the parameters in presented in Table 2.

Easy Realistic Hard

g−1(B) =

0.85 0.01

0.01 0.99


0.65 0.35

0.20 0.75


0.45 0.10

0.20 0.55



β1 =

−4.5 −4.5

0.0 0.0


 0.05 0.75

−0.75 −1.0


 1.5 1.5

−0.75 −1.0



β2 =

−4.5 −4.5

0.0 0.0


−0.05 0.55

−0.75 0.75


 2.5 0.5

−0.75 0.75


Table 2: Parameters in three different dynamic network DGPs. The three columns cor-

respond to three types of networks, varying in terms of inferential complexity. In turn, the

rows contain the corresponding values of the blockmodel B and the regression coefficient

vectors β, one for each state of the HMM.

Generating a single, 9-period network under each of these scenarios results in the mixed

memberships depicted in Figure 7, which shows the density of membership into the first of

two groups across all nodes and time periods. While the ‘easy’ scenario has very clearly

defined memberships of most nodes into one of the underlying groups, the ‘hard’ scenario

has a substantial number of nodes whose membership is decidedly more mixed. The more

‘realistic’ scenario has a non-negligible number of nodes whose membership is mixed, and
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a distinct group imbalance in favor of the second group.

Easy Realistic Hard

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

Membership in Group 1

Figure 7: Simulated mixed-memberships in synthetic networks. The plots depict the
mixed-membership vectors of nodes in three simulated networks, each with 100 nodes ob-
served over 9 time periods. It shows the memberships of nodes in networks generated
under an ‘easy’ DGP (i.e. one where memberships are not mixed, and in which the block
structure is clear), ‘hard’ (i.e. one where memberships are extremely mixed, and no block
structure is apparent in the network) and ‘realistic’ (i.e. where some nodes display a mix-
ture of group memberships, and a block structure is somewhat apparent in the network) on
the left, right, and central panels, respectively.

A.3.1 Accuracy of estimation: mixed-memberships and blockmodels

Overall, and as expected, the accuracy with which dynMMSBM can retrieve the true

mixed-membership vectors depends on the problem’s complexity. The top panel of Fig-

ure 8 shows the estimated mixed-membership values against their known, true values, ev-

idencing a decrease in estimation accuracy as we move from an easy to a hard inferential

task. Despite the clear deterioration, dynMMSBM is still able to produce good quality

estimates even under hard inferential situations, with estimates that have a 0.82 correlation

with their true values.

The model is also able to accurately estimate the blockmodel structure, as the bottom

row of Figure 8 reveals. For each cell of the blockmodels, the true probability of an edge

between members of any two groups is shown in white letters, while the cell itself is colored

in accordance to the corresponding estimated values. Once again, and although the qual-

ity of these estimates (predictably) decreases as the inferential complexity of the scenario

increases, the estimation error remains low.
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Figure 8: Estimation accuracy. For each DGP scenario, the figure shows the estimated
mixed-membership vectors (top row) and the estimated blockmodels (bottom row) against
their known values (indicated by the white numbers in each cell of the blockmodel for
the bottom row). Overall, accuracy of retrieval both sets of parameters depends on the
complexity of the learning problem, although recovery is generally very good, even under
‘hard’ inferential conditions.

A.3.2 Estimation accuracy: regression coefficients

The two most distinctive features of the proposed model are its ability to incorporate pre-

dictors of the mixed-membership vectors and to account for network dynamics. We eval-

uate the accuracy with which our proposed estimation strategy recovers known parameter

values. To do so, we simulate 100 replicates of the 9-period network described above,

generated under our more ‘realistic’ DGP and holding all design matrices constant across

replicates. After generating all 50 networks, we use our model to obtain estimates of the ef-

fect of the monadic predictor on block memberships, as well as of the marginal probability

that the hidden Markov process is in either of the two states for each time period.

Figure 9 shows, for each time period, the distribution of estimated effect sizes of the
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Figure 9: Estimated parameters of block membership regression. The figure shows, for
each time period, the HMM-weighted effect of a continuous predictor on the probability
of instantiating latent group 2 (left panel), and the HMM-weighted intercept of the corre-
sponding regression line (right panel), estimated on 100 networks generated according to
our realistic DGP. In each instance, the red “x” indicates the true parameter value for that
time period, given a known HMM state.

monadic predictor and intercepts for the regression of membership into the second latent

group (as boxplots), along with the true parameter values (shown as a red “x”). We obtain

estimates for each time period by computing the weighted average of estimated parame-

ters in the two hidden Markov states, using estimated marginal probabilities over states in

each time period as our weights. The model is typically able to identify the underlying

Markov state that generated the networks, which in turn translates into correctly estimated

(albeit regularized) effects of the monadic covariate on membership probabilities. Qual-

ity of recovery for regression parameters associated with a given block depends heavily

on the extent to which that block is commonly instantiated in the network. And although

changes in intercepts across time periods are also correctly recovered, the intercepts them-

selves tend to be overestimated. This phenomenon, which we found to be common in all

our simulations, is likely the result of the difficulty in pinning down the precision of the

latent membership vectors. Despite these issues, the mean of the memberships is correctly

recovered (as shown earlier in Figure 8).

A.3.3 Comparison to alternative modeling approaches

Finally, and to further evaluate the benefits of modeling the dynamic nature of the network,

we estimate a separate MMSBM model to the networks in each time period, and compare
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Figure 10: Error for estimated mixed membership vectors. The figure shows average L2

distances between estimated and true mixed-membership vectors for all nodes in each of
50 replicated dynamic networks. On the left, estimates are generated using dynMMSBM.
On the right, estimates are generated using the canonical MMSBM, fit separately to the
nine time periods in each simulated network.

their estimated mixed-memberships to those of a single dynMMSBM estimated on the full

set of networks. In both cases, we omit all covariates, but estimate the αptm parameters

associated with the mixed-membership vectors. After estimating both sets of models on

each of the 50 replications of the “realistic” networks, we compute the average L2 error in

estimated mixed-memberships across nodes. The results are presented in Figure 10.

In general, dynMMSBM performs consistently better than the MMSBM estimated on

each time period, and the latter shows much more variability in terms of accuracy. A ma-

jor challenge for the per-year approach consists of realigning the estimated group labels,

which (under the assumptions of our model) should be done by realigning the cells of the

blockmodel, as all other parameters (such as the mixed-memberships themselves) are sub-

ject to change overtime. Being estimated using just a fraction of the data, however, the

blockmodels obtained in the per-year approach prove too noisy to be useful in the realign-

ment exercise, thus contributing to the variable accuracy of the non-dynamic approach. In

contrast, dynMMSBM is able to recover the underlying blockmodel much more accurately,

thus contributing to the correct estimation of the latent memberships across simulations.

A.4 Additional Empirical Results
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Figure 11: Out of Sample Prediction, Conflict Models. The figure plots the area under
the ROC curve for models with 2-7 Latent Groups. Each model is fit on data from 1816-
2008 and used to predict conflict in the period 2009-2010.
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Figure 12: ROC Curve: Logit, Dynamic Mixed-membership SBM Models. To perform
the forecast, we exclude the final two years (2009-2010) from the dataset and estimate each
model on the preceding years (1816-2008). Then we predict the missing years based solely
on the covariate data.
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Group 1 0.027 0.062 0.012 0.063 0.022 0.020

Group 2 0.062 0.045 0.033 0.031 0.027 0.017

Group 3 0.012 0.033 0.005 0.040 0.023 0.004

Group 4 0.063 0.031 0.040 0.021 0.036 0.018

Group 5 0.022 0.027 0.023 0.036 0.017 0.011

Group 6 0.020 0.017 0.004 0.018 0.011 0.005

Table 3: Group-Level Edge Formation Probabilities. The table displays the probability
of interstate conflict between nodes that instantiate membership in each of six latent groups.
The diagonal shows rates of intra-group conflict and off-diagonal shows rates of conflict
between groups.
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Group 1 Group 2 Group 3
0.999 Germany 0.999 China 0.999 Trinidad-Tobago
0.998 Canada 0.999 Indonesia 0.999 New Zealand
0.998 Australia 0.999 Russia 0.999 Ireland
0.998 Netherlands 0.999 Poland 0.999 Norway
0.998 Italy 0.999 South Africa 0.999 Finland
0.998 West Germany 0.996 Mexico 0.999 Denmark
0.998 Belgium 0.974 Czechoslovakia 0.999 Switzerland
0.998 UK 0.968 Romania 0.999 Luxembourg
0.998 Japan 0.952 Korea South 0.999 Austria
0.997 India 0.945 East Germany 0.998 Jamaica
0.994 USA 0.854 Brazil 0.994 Costa Rica
0.731 France 0.725 Egypt 0.816 Sweden
0.706 Pakistan 0.682 Spain 0.775 Mauritius
0.537 Turkey 0.642 Nigeria 0.755 Israel
0.403 South Vietnam 0.541 Taiwan 0.663 Sri Lanka
Group 4 Group 5 Group 6
0.999 Brunei 0.999 Singapore 1 Liechtenstein
0.999 Bahamas 0.999 Yemen 1 Swaziland
0.769 Malta 0.999 Morocco 1 Equatorial Guinea
0.295 Iceland 0.997 Congo DR/Zaire 1 Bhutan
0.244 Afghanistan 0.997 Algeria 1 Djibouti
0.237 Cambodia 0.996 Ethiopia 1 Cape Verde
0.192 Zimbabwe 0.975 Bulgaria 1 Comoros
0.166 Barbados 0.958 Cuba 1 St Kitts-Nevis
0.088 Ghana 0.95 Hungary 1 Gabon
0.086 Tunisia 0.949 Chile 1 Solomon Is
0.067 Kuwait 0.815 Syria 1 Guinea-Bissau
0.035 Uganda 0.803 Iraq 1 Dominica
0.026 Laos 0.803 Zimbabwe 1 Antigua-Barbuda
0.026 Syria 0.731 Peru 1 Mauritania
0.024 Lebanon 0.707 Myanmar 1 Central African Rep

Table 4: States with Highest Membership in Latent Groups, Cold War period. To
identify the states with highest membership in each latent group, we average over each
states’ latent membership probabilities in the years 1950-1990. Average group member-
ship is reported beside the state name for the top 15 states in each latent group. The group
assignments are consistent with known geopolitical coalitions in the Cold War, with West-
ern allies in Group 1, Eastern bloc countries clustered in Group 2, Western-leaning neutral
states in Group 3, and states engulfed in proxy conflicts in Group 4.
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