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Abstract: Political scientists often find themselves analyzing data sets with a large number of observations, a large number of
variables, or both. Yet, traditional statistical techniques fail to take full advantage of the opportunities inherent in “big data,”
as they are too rigid to recover nonlinearities and do not facilitate the easy exploration of interactions in high-dimensional
data sets. In this article, we introduce a family of tree-based nonparametric techniques that may, in some circumstances, be
more appropriate than traditional methods for confronting these data challenges. In particular, tree models are very effective
for detecting nonlinearities and interactions, even in data sets with many (potentially irrelevant) covariates. We introduce
the basic logic of tree-based models, provide an overview of the most prominent methods in the literature, and conduct
three analyses that illustrate how the methods can be implemented while highlighting both their advantages and limitations.

Replication Materials: The data, code, and any additional materials required to replicate all analyses in this arti-
cle are available on the American Journal of Political Science Dataverse within the Harvard Dataverse Network at:
https://doi.org/10.7910/DVN/8ZJBLI.

Social science scholars often work with data sets con-
taining a large number of observations, many po-
tential covariates, or (increasingly) both. Indeed,

political scientists now regularly analyze data with levels
of complexity unimaginable just two decades ago. Widely
used surveys, for instance, interview tens of thousands of
respondents about hundreds of topics. Scholars of insti-
tutions can quickly assemble data sets with thousands of
observations using resources like the Comparative Agen-
das Project. Moreover, new measurement methods, such
as text analysis, have combined with data sources, such
as Twitter, to generate databases of almost unmanageable
sizes. It is clear that political science, like all areas of the
social sciences, will increasingly have access to a deluge of
data so vast that it will dwarf everything that has come
before.

What statistical methods are needed in this data-
saturated world? Surely, there is no one correct an-
swer. Yet, just as surely, traditional statistical models are
not always equipped to take full advantage of new data
sources. Traditional models—largely variants of linear
regressions—are ideal for evaluating theories that imply
specific functional forms relating outcomes to predic-
tors. In particular, they excel in their ability to leverage
assumptions about the data-generating process, or DGP
(additivity, linearity in the parameters, homoskedasticity,
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etc.) to make valid inferences despite inherent data limi-
tations. Although appropriate when testing theories that
conform with these assumptions, standard models are
often insufficiently flexible to capture nuances in the
data—such as complex nonlinear functional forms and
deep interactions—when no clear a priori expectations
exist.

In this article, we introduce a family of tree-based
nonparametric techniques from the machine learning lit-
erature. We argue that, under specific circumstances, re-
gression and classification tree models are an appropriate
standard choice for analyzing high-dimensional data sets.
In particular, past research has shown tree-based methods
to be very useful for making accurate predictions when
the underlying DGP includes nonlinearities, discontinu-
ities, and interactions among many covariates. Further,
tree models require few assumptions. Rather than impos-
ing a presumed structure on the DGP, tree-based methods
allow the data to “speak for themselves.” Thus, our goal
in this article is to introduce political scientists to this
promising family of methods, which are well suited for
today’s data analysis demands.

In the next sections, we discuss the promise and per-
ils of high-dimensional, “large”-N data sets and intro-
duce the basic logic of tree models. We then provide an
overview of the most prominent methods in the literature.
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Next, we conduct three analyses that demonstrate both
the advantages of tree models as well as their limitations.
First, we conduct a simulation study to illustrate when
tree-based methods are most appropriate and their per-
formance relative to alternatives. We then apply them to
a data set with many potential explanatory variables to
generate estimates of the probability of campaigns “go-
ing negative,” quantities that we subsequently use within
a marginal structural modeling framework to estimate
causal effects (Blackwell 2013). Finally, we replicate and
extend Ghitza and Gelman (2013) and analyze a large col-
lection of survey responses to estimate attitudes and be-
haviors of small demographic subgroups, which requires
the efficient estimation of “deep” interactions between
multiple covariates.

Before moving on, it is important to note that the pre-
cise role of tree-based models and other machine learn-
ing methods in the social science enterprise is an open
question. Some scholars have argued that tree models are
valuable tools for testing theories and estimating complex
causal effects (e.g., Hill 2012; Imai and Strauss 2011). Yet,
tree models were first and foremost designed for mak-
ing accurate out-of-sample predictions rather than for
testing theoretical claims. Moreover, the ability to “dis-
cover” subtleties in the data is not always a virtue. As we
discuss below, the risk of confusing signal for noise in
high-dimensional data is very real, and for some tasks,
tree-based models are overly complex. If we are testing a
theory adequately encapsulated by a parametric model,
more traditional approaches are not only sufficient, but
preferable. Lastly, large data sets and flexible models gen-
erally do not remove the burden from researchers for
devising suitable theories and having a clear understand-
ing about how predictors affect outcomes. Indeed, failing
to take theoretical considerations seriously when build-
ing complex models often results in nonsensical findings
(Lazer et al. 2014).

Thus, in this article, we advocate for the expanded
use of tree models for characterizing complex DGPs
where the goal is not direct theory testing but rather ac-
curate prediction. That is, we believe tree models can
serve as appropriate standard choices when researchers’
primary goal is to correctly capture the nuances of a po-
tentially complex but unknown data-generating process
in a setting with many potential predictors related in
nonlinear and interactive ways to the outcome. Super-
ficially, our focus on prediction seems restrictive. As we
show in our examples below, however, there are many
instances in which tree models can contribute mean-
ingfully to essential social science tasks, including esti-
mating causal effects and improving measures of latent
traits.

The Promise and Perils of Flexible
Models of “Big Data”

When building predictive models using large data sets,
quantitative scholars face two countervailing pressures.
First, one wishes to leverage the richness of the data to
correctly capture the data-generating process (DGP), thus
avoiding model misspecification. A good model would
allow for a large number of possible covariates and for
complex interactions between them. So too it would allow
for nonlinear functional forms and even discontinuous
shifts in how a set of covariates is related to outcomes.

The second (and contrary) need is to avoid over-
fitting the data, a goal sometimes labeled regularization.
Overfitting occurs when the model is so complex that it
makes predictions based on idiosyncratic features of the
data unrelated to the true DGP. In other words, we con-
fuse the noise and the signal in our data, leading both
to poor out-of-sample predictive performance and an in-
correct understanding of the DGP. Overfitting, of course,
is a potential problem for any statistical method, but it
is particularly endemic for models that contain a large
number of predictors, flexible functional forms, and deep
interactions.

To understand how the goals of flexibility and reg-
ularization are at odds, consider a hypothetical example
with N = 600 observations of a single outcome variable
(y) with two possible predictor variables (x1, x2). Assume
further that the predictors, which take on just 10 integer
values, are distributed uniformly. How do we then de-
termine what value of y should be associated with each
unique combination of the covariates?

One naı̈ve proposal might be to model the outcome
based on the average value (ȳ) observed for each unique
combination of the categories in x1 and x2, or “region.”
This fully interactive specification would be the ultimate
in flexible models, allowing for almost any possible re-
lationship between the covariates and the outcome. The
problem, however, is that there is generally not sufficient
data to execute this strategy. Figure 1 shows the number of
observations that appear in each region in one simulated
data set. In this example, the median region has just six
observations, and the maximum number of observations
in any region is 13. With so little data in each region, we
increase the risk of overfitting.

Thus, even in a relatively simple world with only
two covariates and a modestly large sample size, there is
not sufficient data to make valid predictions about the
expected value of y for each region. Obviously, this prob-
lem becomes exponentially worse as variables are added.
With three similar covariates, there would be 103 = 1,000
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FIGURE 1 Number of Observations in Each
“Region,” or Unique Combination of
x1 and x2 with N = 600 Randomly
Generated Observations
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possible regions, meaning that the majority of regions
would be empty. Indeed, it is clear that in a data set with
just 20 covariates, even “big data” on the grandest imag-
inable scale will not be big enough for this strategy to
succeed.

Standard parametric models circumvent this prob-
lem by making assumptions about the DGP. Common
regression models, for instance, assume that the value of
y increases as a linear function of the (possibly trans-
formed) covariates. The advantage is that we can accu-
rately recover relationships between the covariates and
the outcome despite the sparsity of data in each region.
The disadvantage is that they eradicate aspects of data
that do not conform with their underlying assumptions.

The trade-offs involved are illustrated in Figure 2. The
upper-left panel shows the true DGP for the 600 observa-
tions shown in Figure 1. The upper-right panel shows the
estimates generated by the naı̈ve approach of estimating
ȳ for each combination of x1 and x2. As expected, this
approach leads to significant overfitting: Estimates fluc-
tuate wildly in response to random error rather than the
true DGP. On the other hand, the bottom panels show
estimates from a simple linear model and a model with
polynomial terms and interactions. In both, the estimated
relationships between the covariates and the outcome are
clearly inadequate and would lead researchers to an in-
correct understanding of the DGP.

Tree-based models are members of a growing class of
methods from the machine learning literature designed to
yield a balanced solution to this dilemma—allowing flexi-
ble functional forms while avoiding overfitting. Their goal
is to specify regions of the covariate space such that the
outcome is homogeneous and the number of observations
in each region is sufficiently large, yet where the regions
themselves are sufficiently numerous and unstructured to
allow for complex relationships between covariates and
the outcome. In this way, tree-based models are related
to neural networks (Beck, King, and Zeng 2000), kernel
regularized least squares (Hainmueller and Hazlett 2014),
and other nonparametric techniques.

While each of these approaches has its own advan-
tages, tree-based methods are particularly attractive in
offering versatility and ease of use. Tree models are highly
flexible, easily accommodating common problems such
as missing data, interactions between many variables,
and both continuous and discrete outcomes. Further, tree
models are easy to interpret relative to other “blackbox”
techniques, such as neural networks, although interpre-
tation remains a challenge relative to, say, generalized
additive models (Beck and Jackman 1998). Finally, al-
though tree-based methods perform best when irrelevant
variables are excluded, they are relatively adept at ignoring
uninformative predictors. While imperfect—inevitably,
some irrelevant predictors are chosen in splitting rules—
tree-based methods tend to produce relatively parsimo-
nious models even when offered many uninformative
predictors.

Although tree models are not unknown in the disci-
pline (e.g., Green and Kern 2012; Imai and Strauss 2011;
Kastellec 2010; Muchlinski et al. 2016), they have ap-
peared rarely. At the same time, they are now “go-to”
models in literatures focused on prediction and classifi-
cation (Hastie, Tibshirani, and Friedman 2009). Our aim
in the next sections, therefore, is to introduce the most
prominent tree models and showcase their potential in
analyzing political science data.

Single-Tree Models

At their core, tree-based models involve two basic steps.1

First, they divide the covariate space into B nonover-
lapping and exhaustive regions, R1, R2, . . . , RB , that are
relatively homogeneous with respect to the outcome y.
Second, they make a prediction, cb , for all observations
that fall within region Rb .

1For this section, we follow presentations in Faraway (2005) and
Hastie, Tibshirani, and Friedman (2009).
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FIGURE 2 True and Recovered Relationships in Simulated
Data
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100

× √
xi1xi2

(5.5−xi1)2

(5.5−xi1)(5.5−xi2)
+ �i , where �i ∼

N(0, 0.35). The simple linear model is y = �0 + �1x1 + �2x2, whereas the com-
plicated model is y = �0 + poly(x1, 2) × poly(x1, 2) (where poly(x, d) is the se-
quential polynomial-generating function, d is the highest degree generated, and
the × operator generates all main effects and interactions).

To understand this more clearly, consider the clas-
sification and regression tree (CART) model. Its first
step consists of partitioning the covariate space into
(hyper)rectangles. The left panel of Figure 3 displays a
partition of a two-dimensional covariate space into 14
nonoverlapping and exhaustive regions using the same
data as depicted in Figure 2. Each region corresponds to
unique covariate value combinations, which can be suc-
cinctly represented in the form of a binary tree (shown in
the central panel of Figure 3 for our example). At each in-
ternal node of the tree, the covariate space is split into two
distinct regions depending on the splitting rule associated
with the node (e.g., X1 ≤ v1).

The terminal nodes, or “leaves,” of the tree corre-
spond to the regions, and constant predicted values (cb)
are assigned to each region/leaf. For a continuous out-
come variable yi , CART defines this constant as the
mean outcome for all observations within region Rb

(ȳi∀i ∈ Rb).2 Thus, the model produces a prediction sur-
face for every possible combination of the explanatory
variable values. For instance, the right panel of Figure 3
shows the predicted “response surface” corresponding to
the regions defined in the left and center panels for our
running example. More formally, a tree model for J co-
variates is a function

f (Xi ) = T(Xi ; �) ≡
B∑

b=1

cb I (Xi ∈ Rb), (1)

where I (·) is the usual indicator function, and � is a
set of parameters that contains the tree depth (or size),
the region definitions (i.e., the splitting rules), and the
predicted values (cb).

2Although we focus on continuous outcomes, the same princi-
ples apply to categorical outcomes. The supporting information
includes a discussion of trees for categorical outcomes.
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FIGURE 3 Left: Example of a Partition of a Two-Covariate Space into 14 Rectangular
Prediction Regions. Center: A Binary Tree Corresponding to the Partition Depicted
on the Left. Right: 3-D Plot of the Prediction Surface Corresponding to Regions
Defined in the Left and Center Panels
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Choosing � optimally will yield a response surface
that accurately captures the true relationship between the
covariates and the outcome y while avoiding overfitting.
Accurately retrieving the response surface is an optimiza-
tion problem, namely,

�̂ = arg min
�

B∑

b=1

∑

Xi ∈Rb

L (yi , cb),

where L (·) is a loss function that can be thought of
as a measure of model fit. The usual loss function3 in
regression trees is the familiar sum of squared errors,∑

i :Xi ∈Rb
(yi − cb)2.

Since finding the best partition and predicted value
combination for a given loss function is computationally
prohibitive, CART adopts a heuristic known as recur-
sive binary splitting to find an acceptable solution. This
procedure is described in more detail in the supporting
information.

For all its simplicity, CART is likely to fail in terms
of preventing overfitting (Sutton 2005). After all, a
tree with the same number of nodes as observations
will produce a prediction surface that exactly matches

3In general, the choice of a loss function depends on the type of data
being modeled, as well as on the inferential goal at hand. In certain
instances, choice of a loss function carries implications regarding
the conditional distribution of the outcome (e.g., negative log-
likelihood loss functions are closely related to the distributional
assumptions of classical Generalized Linear Models, or GLMs),
so it is important for researchers to ensure their choice of a loss
function is justified given the estimation problem at hand (see
Hastie, Tibshirani, and Friedman 2009, 221–22).

observed outcomes, and that thus wildly overfits the data
(as in the naı̈ve example in the second section). A com-
mon strategy is to grow large trees and then “prune”
them (Breiman et al. 1984). Complexity pruning in-
volves finding a subtree T that minimizes the quantity
C�(T) = ∑B

b=1 L (yi :Xi ∈Rb , cb) + �B , where L (·) is the
loss function, B is the number of terminal nodes, and
� ≥ 0 is a prespecified parameter that controls the trade-
off between tree size and fit.

The advantage of CART models is that they can be
built quickly and are relatively easy to understand and
interpret. Depictions of binary trees are a very intuitive
means of conveying modeling results (see, e.g., Kastellec
2010, 216). Moreover, single-tree models easily accom-
modate complicated interactive relationships, continu-
ous and discrete predictors, and large numbers of irrel-
evant predictors. However, single-tree models perform
very poorly when uncovering additive relationships (Fox
2000). Further, the algorithmic approach to building a
tree leaves us with no means for assessing uncertainty in
our estimates. Finally, the sequential nature of the binary
recursive splitting algorithm means that the structure of
the tree is often highly sensitive to small changes in the
observations included.

Fortunately, the intuitive logic behind single-tree
methods can be extended in order to successfully ad-
dress these drawbacks by combining multiple trees that
are aggregated to create superior ensemble models. In
the next section, we review three methods for cre-
ating tree ensembles before turning to our empirical
illustrations.
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Ensemble Approaches: A Family
of Trees

Ensemble methods combine multiple trees of the type
defined in Equation (1) in order to better approximate the
outcome surface while reducing overfitting. Their general
form is

f (Xi ) =
M∑

m=1

Tm(Xi ; �m), (2)

where M is the number of trees, and �m is the set of
parameters that define each tree Tm. The approaches we
review here differ only in the ways in which they construct
the individual trees and weight them when forming the
ensemble. Specifically, we discuss three of the most com-
monly used sum-of-trees models: random forests, gradi-
ent boosting machines, and Bayesian additive regression
trees. Our aim is to provide an intuitive understanding
of each model. We direct readers interested in more de-
tailed presentations to James et al. (2013), Hastie, Tibshi-
rani, and Friedman (2009), and Chipman, George, and
McCulloch (2010).

Tree Bagging and Random Forests

Tree bagging—short for bootstrap aggregating—relies on
the fact that single-tree methods can result in very differ-
ent predictive surfaces depending on which observations
are included. This is particularly true with “deep” trees
with many terminal nodes. The intuition behind tree bag-
ging is to conceptualize trees fit to different subsets of data
as if they were independent draws of a random variable.
By this logic, we can reduce the variance in single-tree
estimates of the response surface by fitting many trees
and combining them as defined in Equation (2). To the
extent the independence assumptions hold, this ensem-
ble model will provide a low-variance, low-bias estimate
of the true response surface. More formally, tree bagging
takes multiple simple random samples of the same data
set (with replacement), of size equal to that of the original
data set. It then fits a deep tree (with no pruning) to each
bootstrapped sample. For M samples, the tree-bagging
model is then f̂bag (Xi ) = 1

M

∑M
m=1 Tm(Xi ; �̂m).

Although the power of tree bagging stems from the
assumed independence of the trees, in practice, trees are
highly correlated. Random forests (RF) address this pitfall
by systematically lowering the level of correlation between
trees (Breiman 2001). Specifically, at each splitting stage
of the tree-growing algorithm, the RF selects an optimal
splitting rule based on only a random subset of a < j of

the covariates. Moderately small values of a reduce the
correlations among trees and improve the performance
of the ensemble.

Tree Boosting and Multiple Additive
Regression Trees

While superficially similar to bagging and random forests,
tree boosting approaches the problem of creating multiple
trees from a very different angle. First, the bagging pro-
cedure creates trees independently. Boosting, on the other
hand, builds trees sequentially, such that each new tree
improves the predictive power of the ensemble. Second,
whereas bagging relies on fitting trees to random sam-
ples drawn from the data, boosting relies on fitting trees
to transformations of the data. The result is a procedure
that grows new trees specifically aimed at accommodating
observations that the existing ensemble predicts poorly.

Boosting approximates a solution to the problem of
fitting a sum of trees by adding new trees one at a time,
while keeping all existing trees unchanged. At each stage
m of this forward stagewise process, boosting solves

�̂m = arg min
�m

N∑

i=1

L (yi , fm−1(Xi ) + Tm(Xi ; �m)), (3)

where fm−1(Xi ) is the value of the sum of trees that was
estimated in the first m − 1 stages. Intuitively, this stage-
wise approximation forces each new tree to focus on the
errors of its predecessors—thereby progressively reducing
lack of fit.

While the intuition behind boosting is straightfor-
ward, optimizing Equation (3) is not. However, the ap-
proximating procedure of choice—known alternatively
as gradient boosting, multiple additive regression trees
(MART), or gradient boosting machines (GBM)—is both
extremely accurate and fast. In short, at the mth stage of
the process, GBM fits a new tree to the negative gradi-
ent of the loss function (−gm). That is, it approximates a
solution to Equation (3) with

�̂m = arg min
�m

N∑

i=1

(−gim − Tm(Xi , �m))2, (4)

where gim is the ith component of gm and serves as a more
informative kind of residual.4

This strategy can create arbitrarily accurate models
simply by increasing the number of trees. To prevent

4Let the gradient of the loss function be gm = ∂L (yi ,
fm−1(Xi ))/∂ fm−1(Xi ). When constructing the mth tree, gm is a
vector pointing in the direction of steepest increasing loss. GBM’s
strategy is to add trees that move f (Xi ) in the opposite direction
(Friedman 2001).
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this, researchers can prespecify two parameters, in ad-
dition to selecting the number of trees. First, we can
choose the number of terminal nodes in each tree, de-
noted B . Note that, given the additive form of GBM,
the choice of B also determines the maximum order
of interactions in the model—an upper limit that is
usually justified substantively, and therefore held fixed
at some (preferably low) level. Second, the regularizing
role of B is complemented by tree shrinkage, which is
achieved by scaling the contribution of each new tree
by a factor, 0 < � < 1, such that the running sum be-
comes f (Xi ) = fm−1(Xi ) + �T(Xi ; �m). Setting � close
to zero limits each new tree’s contribution to the model’s
prediction, which in turn increases the number of trees
that need to be fit in order to approximate the outcome
surface. Intuitively, setting � to a low value allows the ex-
pansion to “learn” the outcome surface slowly (Hofner
et al. 2014). On the other hand, setting � too low can
lead to slow rates of learning. In practice, it is common to
preset both � and B and find an optimal number of trees
using cross-validation.

Bayesian Trees

Bayesian additive regression trees (BART) are similar to
GBMs in that trees in the ensemble are grown to accom-
modate residuals of the current fit rather than outcomes
themselves. Further, the contribution of each tree to the
entire fit is regularized so that no one tree dominates the
prediction of the response surface. Unlike GBMs, how-
ever, tree-growing and regularization goals are achieved
by assuming that the parameters that govern tree con-
struction can be estimated under a hierarchical Bayesian
framework (Chipman, George, and McCulloch 2010).
This provides both estimates of their expected predicted
values and, uniquely, measures of uncertainty.5

The definition of BART begins by replacing Equa-
tion (2) with

yi =
M∑

m=1

Tm(Xi ; �m) + �i , with �i ∼ N(0, �2), (5)

for continuous outcome yi . For a given number of trees
M, we then place independent priors over all parame-
ters in �m: the depth of each tree, the variables used
at each split, the value used for the corresponding split,
the terminal-node values, and the error variance in Equa-
tion (5) (i.e., �).6 The definition of these prior probability

5See Hofner, Kneib, and Hothorn (2014) on creating bootstrapped
standard errors for non-Bayesian tree models.

6The structure of the regularization priors is discussed in the sup-
porting information.

distributions controls the influence of each tree in the pre-
diction of the outcome surface such that no one tree can
dominate the ensemble.

Relying on a Markov chain Monte Carlo algorithm,
BART explores the space of all possible “forests” with M
trees, producing a sample of M trees at every step and,
with it, a sample of the outcome variable given predictors
Xi . So, for instance, if we specify that the model should
have 100 trees, BART creates a posterior sample of the
100-tree models that are likely given both the observed
data and our priors. We can then summarize the poste-
rior predicted outcomes in terms of their expected values
and variability across draws. The result is a highly flex-
ible, data-responsive ensemble method, which produces
measures of uncertainty in the very process of finding a
sum of trees that accurately reproduces a given outcome
surface (Hill 2012).

In this section, our primary goal was to provide well-
grounded intuition as to how tree-based models work.
However, we provide additional discussions of some im-
portant practical considerations in our supporting infor-
mation, including information about available R pack-
ages, approaches to choosing tuning parameters, and
ideas of how to interpret the substantive effects.

Three Illustrations

We now provide three examples that showcase the advan-
tages of tree models while also illustrating their relative
strengths and weaknesses. First, we evaluate the perfor-
mance of CART, RF, GBM, and BART models using syn-
thetic data and compare them with several alternative
approaches. Second, we use GBM and BART to predict
when campaigns will engage in negative advertising. This
example illustrates the advantages of tree models when
the researcher’s primary aim is to accurately recover the
response surface for a specific outcome. We use these
predictions to estimate the causal effect of negative cam-
paigns on vote share in U.S. elections using the strategy
outlined in Blackwell (2013). Finally, we replicate and ex-
tend the estimation of subgroup attitudes and behaviors
in U.S. elections conducted by Ghitza and Gelman (2013)
to illustrate the ability of tree methods to model deeply
interactive relationships.

An Illustration Using Synthetic Data

We begin by creating 40 different potential covariates—
including symmetric and asymmetric variables, con-
tinuous and categorical variables, and correlated and
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independent variables.7 We then create outcomes under
three different data-generating processes (DGPs): an ad-
ditive and linear specification; a specification with both
additive terms and interactions; and a more complicated
specification that contains additive terms, interactions,
nonlinearities, and discontinuities. In each case, we also
ensure that at most 4 of the 40 features are actually re-
lated to the outcome of interest, and that each outcome
contains some amount of Gaussian error. Finally, for each
DGP, we create 100 training sets of 500 observations and
a single test set with 3,000 observations. We use these
test sets to evaluate the relative predictive strengths of the
different methods.

We fit four different tree-based models to each of
the training sets: CART, RF, GBM, and BART. In ad-
dition, we fit three non-tree-based models for com-
parison purposes: a (Gaussian) kernel-regularized least
squares (KRLS) model, a single-hidden-layer neural net-
work (NN), and a generalized additive model. Each of
these models requires that we preselect various “tuning”
or regularization parameters. For the BART model, we use
the recommended default values for the model’s prior
hyperparameters discussed in Chipman, George, and
McCulloch (2010).8 KRLS uses an automated leave-one-
out cross-validation procedure to choose its parameters.
Further, for the Generalized Additive Model, or GAM, we
used a thin plate to smooth over the preidentified relevant
covariates in each DGP. This strategy allows us to show
just how well tree-based models perform even compared
to an unrealistically well-specified GAM.9 Finally, for the
CART, RF, GBM, and NN, we conducted a fivefold cross-
validation to choose tuning parameters for each model
for each of the 100 training sets.10 For the tree models, we
searched over the parameter values shown in Table SI-2
in the supporting information.11

To evaluate the relative performance of each, we cal-
culate the out-of-sample root mean square error (RMSE)
by first fitting the model using data from each of the
100 training sets and then evaluating their predictive

7Additional details for this simulation are provided in the support-
ing information.

8Specifically, we use sigdf = 3, sigquant = .9, ntree =
200, and k = 2.

9There are not enough degrees of freedom to estimate a model that
remains agnostic as to the variables over which to smooth.

10As noted in the supporting information, it is critical to consider
many possible values for the number of trees in the GBM model.
Due to the large number of data sets in this simulation, we consider
values ranging from 1 to 2,500 by increments of 3. However, in
applied settings an even finer grid is suggested.

11For the NN model, we held the decay constant at 0.1 and let the
number of neurons vary from 1 to 15 by increments of 2.

accuracy using the test set. This results in 100 RMSE
values for each model, for each DGP. To provide a mean-
ingful scale to these RMSE values, we normalize them
by the best observed RMSE, producing relative RMSE
(RRMSE) measures. Thus, an RRMSE of 1.5 would indi-
cate that a model has performed 50% worse than the best
observed individual fit, and values closer to 1 indicate
better performances.

Figure 4 presents box plots of the relative RMSE dis-
tributions across the 100 training sets, with a reference
line indicating the relative RMSE achieved using a mean
model (i.e., a model that predicts test observations using
the mean of the test outcome). Distributions correspond-
ing to tree-based models are shaded in gray.

The left panel shows the results when the underlying
DGP is a simple additive relationship between the covari-
ates and the outcome. Unsurprisingly, a smoothed linear
model (viz., GAM) can outperform all others when its
underlying assumptions are met. More interestingly, the
tree-based models actually perform comparably well—
even without the unfair advantage enjoyed by the GAM
model. GBM, for instance, has a median RRMSE that
is less than 5% larger than the best GAM, and BART
performs similarly well on average. As discussed in the
supporting information, the major shortcoming of
single-tree CARTs is their inability to pick up the addi-
tive portions of a DGP—an issue illustrated by being one
of the worst-performing models when confronted with a
strictly additive DGP. RF tends to do much better than
single-tree models in terms of predictive variance, but
it still shares CART’s weakness in performing relatively
poorly for strictly additive DGPs.

Across the remaining two panels, tree-based
models—particularly tree ensembles—perform consis-
tently well in comparison to other strategies. The other
models are either less consistent or make poor predic-
tions through insufficient regularization. The tree ensem-
ble models show relatively good predictive performance
under a DGP typical in political science research (viz.,
the additive and multiplicative DGP used in the central
panel of Figure 4) and do even better when the DGP is si-
multaneously additive, multiplicative, nonlinear, and dis-
continuous.12 Gradient-boosted tree ensembles perform
well under all circumstances, followed closely by BART
and random forests. Overall, then, tree-based models are
shown to perform well under a variety of data-generating
circumstances, offering very little room for researcher ma-
nipulation of model specifications and results. We next

12In the supporting information, we further illustrate that tree
ensembles perform well when recovering the underlying prediction
surfaces.
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FIGURE 4 Relative RMSE across 100 Training Sets for Each Model and Each DGP
Specification

Relative RMSE

GBM (CV)

Random Forest (CV)

BART

GAM (informed)

KRLS (CV)

Single Tree (CV)

Neural Net (CV)

1.0 1.1 1.2 1.3 1.4

Additive DGP

1.0 1.1 1.2 1.3 1.4 1.5

Additive and Multiplicative DGP

1.0 1.1 1.2 1.3 1.4

Complicated DGP

Note: Lower values indicate better relative predictive accuracy with respect to test outcomes. The dashed vertical line indicates
the RRMSE of a model that simply predicts the mean value of y in the test set (i.e., a mean model). GAM is estimated by
smoothing over known predictors independently, and it should therefore be understood to have an unfair advantage over all
other models.

turn to providing examples of how these models can be
incorporated into political science research.

Accurate Predictions of Action Sequences
in Marginal Structural Models

When studying dynamic processes, researchers wishing to
make valid causal inferences are often faced with a difficult
dilemma. On the one hand, failing to include important
covariates leads to omitted variable bias. On the other
hand, including many of the most important covariates
in a dynamic setting may induce posttreatment bias.

To address this concern, Blackwell (2013) outlines a
marginal structural modeling (MSM) approach for es-
timating the effects of time-varying covariates by rely-
ing on estimated inverse probability of treatment weights
(IPTW). Blackwell (2013) applies this framework to es-
timate the effect of negative campaigning during the
5 weeks prior to the election on the two-party vote share
for 144 Democratic candidates in the election cycles be-
tween 2000 and 2006. Specifically, the action sequence
of interest is whether the candidate has “gone negative”
in a given week. We direct interested readers to Blackwell
(2013) for a fuller discussion and provide a brief summary
of the data and methods here.

Assume that for observation i at time period t, we ob-
serve action Ait ∈ {0, 1}, which represents, for instance,
whether campaign i engaged in negative campaigning in
week t. To implement the MSM method, one can take

the following steps: (1) Estimate the probability of the
observed action based on a vector of confounders (Xit )
and lagged values (Ai,t−1), denoted Pr(Ait |Ai,t−1, Xi,t);
(2) Estimate the probability of the observed action
based only on a vector of lagged values Ai,t−1, denoted
Pr(Ait |Ai,t−1); (3) Calculate the “stabilized weight” for
each observation as

SW i =
T∏

t=1

Pr(Ait |Ai,t−1)

Pr(Ait |Ai,t−1, Xi,t)
; (6)

(4) Calculate the causal effect of the sequence of previ-
ous actions (Ai,t∀t ∈ [t∗, . . . , T − 1]) on a given out-
come at time T using a weighted least squares regression,
yi,T = � + �

∑T−1
i=t∗ Ai,t + �Xi,T + �i , where the weights

are calculated according to Equation (6).
The critical step is to build a “correct” model of

the action sequence
−→
A i = Ai,1, . . . , Ai,T−1. Accurately

modeling
−→
A i is especially important given that the MSM

approach requires a sequential ignorability assumption,
which states that the weights reflect the influence of all
relevant time-varying covariates. Thus, MSM represents
another instance of an increasingly common scenario in
political science research where we wish to build models
that provide accurate predictions for specific outcomes,
but the set of covariates and the functional forms relating
them to outcomes are not of direct substantive interest.13

13For an alternative approach to developing weights for MSM mod-
els, see Imai and Ratkovic (2015).
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TABLE 1 Covariates Included in Predictive Models of Going Negative

Variable Description Abbrev.

GAM
(Incumbent

Denom.)

GAM
(Noninc.
Denom.) Numer.

Trees
(Denom.)

Ave. polling support for Dem. in period t − 1 Pollt−1 X X X
Ave. polling support for Dem. in period t − 2 Pollt−2 X
Polling for undecided option in period t − 1 Undect−1 X X
Polling for undecided option in period t − 2 Undect−2 X
Democrat ran negative ads in period t − 1 DNegt−1 X X X X
Democrat ran negative ads in period t − 2 DNegt−2 X X X X
Fract. of Rep. ads that were negative in t − 1 RNegt−1 X X X
Fract. of Rep. ads that were negative in t − 2 RNegt−2 X X X
Number of ads run by Democrat in period t − 1 DAdst−1 X
Number of ads run by Democrat in period t − 2 DAdst−2 X
Number of ads run by Republican in period t − 1 RAdst−1 X
Number of ads run by Republican in period t − 2 RAdst−2 X
Democratic fundraising in period t − 1 DFundt−1 X
Democratic fundraising in period t − 2 DFundt−2 X
Republican fundraising in period t − 1 RFundt−1 X
Republican fundraising in period t − 2 RFundt−2 X
Fract. of Dem. ads that were negative up to t − 3 DNegFract−3 X X X X
Fract. of Rep. ads that were negative up to t − 2 RNegFract−2 X X
Fract. of Rep. ads that were negative up to t − 3 RNegFract−3 X X
Campaign length Length X X X X
Baseline polling support for Democrat Base poll X X X X
Baseline polling for undecided category Base Undec. X X X X
Senate or gubernatorial race Office X X X X
Year y2000-2006 X X X X
Incumbency status for Democrat Deminc NA NA NA X
Weeks until Election Day Weeks X X X X

The problem, of course, is that deciding on the ap-
propriate set of covariates, interactions, and specific func-
tional forms for this model is an uncertain process. For
instance, Blackwell (2013, 513) writes, “In order to sat-
isfy the assumption of sequential ignorability, we must
gather as many covariates as possible that might influ-
ence the decision to go negative ... and are correlated with
the election outcome.” Building correctly specified mod-
els using traditional methods comes with a number of
serious challenges and drawbacks. To begin with, there
is a concern that researchers may search the space of po-
tential model specifications until they arrive at one that
generates weights that confirm their theory. Further, re-
searchers may feel pressured to include a large number of
potential covariates in the specification, which can lead
to overly complex models. Tree-based methods offer a
number of advantages to building models that accurately
capture response surfaces in these settings, and they do so
while requiring minimal researcher intervention in terms

of choosing appropriate functional forms or relevant co-
variates.14

To illustrate this, we replicate the analysis in
Blackwell (2013) using two of the best-performing tree-
based models in our simulation study above: BART and
GBM. As a first step, we replicate the models in Black-
well (2013). Originally, the numerator in Equation (6)
was estimated using a logistic regression. However, the
denominator quantities in Equation (6) were estimated
in separate GAM models for incumbents and nonincum-
bents. The predictors included in all three of these models
are shown in Table 1. The full model specification, which
includes several interactions and nonlinear smoothing, is
shown in the supporting information.

14While tree models tend to be sparser than traditional mod-
els, they are not specifically designed to identify parsimonious
models. For this purpose, models like the LASSO offer a better
alternative.
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In all, the models included in Blackwell (2013) for cal-
culating the weights are quite complex, requiring the con-
struction of multiple models for subsets of observations as
well as specifying multiple interaction and nonlinearities.
As in all modeling exercises, these and many other choices
must be made by researchers and then justified to read-
ers. However, given the large number of possible model
configurations and space constraints in standard articles,
not all decisions can be adequately explained. Why, for
instance, should we include lagged indicators for negative
campaigning from the previous two periods but lagged
polling data from only one previous period? Why not in-
teract polling data with the number of weeks left before
Election Day? We expect that these choices were made
based on a deep familiarity with the data. Nonetheless,
we believe that this is an example of a situation where re-
lying on tree-based methods may provide an approach to
model building that is easier to implement and to justify
in terms of out-of-sample predictive power.

To construct our tree models, we first specified the set
of potential predictors. The factors included for the nu-
merator in Equation (6) in Blackwell (2013) were chosen
for theoretical reasons, and we follow these recommenda-
tions. For the denominator, however, we expand the list of
covariates to include the full set of 26 variables. Further,
we estimate only a single model for incumbent and non-
incumbent Democrats, relying on the models themselves
to adequately capture any differences across groups. As
noted above, the treatment of interest is whether a Demo-
cratic candidate has “gone negative” in a given week. Thus,
the outcome is a binary indicator for negative advertising
as measured for 2,598 candidate-weeks.

After specifying predictors, the next step consists
of selecting appropriate tuning parameter values.15 For
GBM models, it is best to obtain these values using some
form of cross-validation. Although BART can in principle
be cross-validated, its default parameters have performed
very well in a wide variety of settings. Accordingly, we
estimate a GBM model using the best-fitting parameters
resulting from a tenfold cross-validation (viz., number
of trees M = 638, tree depth B = 3).16 We estimate the
BART model using the recommended default parameter
settings (see note 8).

15MSM models are consistent when the weighting model is consis-
tent. Thus, in this instance, it is important that tuning parameters
are chosen so that the model for the action sequence is regularized
and not overly complex.

16We chose a shrinkage value of 0.005 and cross-validated only to
identify the optimal tree depth and tree number. For tree depth, we
considered values of 3 and 5, reflecting our uncertainty as to the
maximum level of interactions between covariates. For the number
of trees, we considered all integer values from 1 to 2,000.

The next step is to asses the quality of the model
fit. For tree-based models, it is crucial that model fit be
assessed based on out-of-sample properties since it is pos-
sible to arbitrarily improve in-sample fit by allowing for
increasingly complex models. In this case, we calculate
fit statistics based on, first, a (separate) tenfold cross-
validation of the same data used for choosing the tuning
parameters. Second, we calculated fit statistics using 10%
of the original data that were randomly selected to be held
back during the process of choosing tuning parameters.
Fit statistics for both analyses are shown in Table 2.

The first column of Table 2 shows that the predictions
from each of the models are highly correlated. Yet, the re-
maining columns show that the GBM and BART models,
despite requiring fewer decisions from the researchers,
provide more accurate predictions. Specifically, the Brier
scores17 are lower for GBM and BART. Further, the areas
under the receiver operator curve (AUROC), sensitivity
curve, and specificity curve are all higher for the tree
models. In general, therefore, these results indicate that
the tree models are to be preferred in terms of out-of-
sample predictive performance.

Although the predictions for specific candidate-
weeks are highly correlated, the product in Equation (6)
means that even small differences in predictions can cu-
mulatively lead to different weights.18 These differences
are of substantive consequence. Table 3 shows the esti-
mated effect of negative campaigning in the 5 weeks lead-
ing up to the election on two-party vote share for the 144
elections in the data set. Following Blackwell (2013), we
estimate separate coefficients for incumbents and nonin-
cumbent candidates. (Full model specifications are shown
in the supporting information.)

The estimated effect of negative campaigning on vote
share as well as bootstrapped confidence intervals for the
unweighted regression and the GAM-weighted regression
are shown in the top rows of Table 3. From these com-
peting estimates,19 Blackwell (2013, 514) concludes that
the GAM-weighted MSM uncovers effects that are at odds
with previous findings, suggesting that going negative has
a discernibly positive and large effect on the vote share

17Let y∗
i,t be the predicted probability of observing candidate i

running a negative ad in week t; the Brier score is then
∑

i

∑
t (y∗

i,t −
yi,t )2.

18The final stabilized weights estimated by the GAM models are
only loosely correlated with the GBM (Pearson’s r = .309) and
BART (r = .589) models, whereas there is a stronger correlation
between the GBM and BART models (r = .738).

19Our estimates differ from those in Blackwell (2013) due to slight
differences in missingness because of the expanded covariate list as
well as Monte Carlo error.
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TABLE 2 Predictive Fit Statistics for Competing Models of Going Negative

Area under

Correlation with GAM Brier Score ROC Curve Sensitivity Curve Specificity Curve

Within-sample tenfold cross-validation fit statistics
GAM 1.000 0.316 0.906 0.615 0.708
GBM 0.950 0.310 0.908 0.616 0.709
BART 0.964 0.309 0.909 0.616 0.710
N = 1,035

Out-of-sample fit statistics
GAM 1.000 0.355 0.866 0.610 0.713
GBM 0.931 0.333 0.906 0.622 0.740
BART 0.947 0.333 0.907 0.623 0.741
N = 115

Note: The top panel evaluates predictions from the GAM, GBM, and BART models in a tenfold cross-validation within the training set.
The bottom panel evaluates the same models using observations from the test set, which was excluded for the purposes of selecting tuning
parameters. Lower values for the Brier score indicate superior fit, and higher values for the areas under the receiver operator curve (ROC),
the sensitivity curve, and specificity curves indicate superior fit. In all cases, the tree-based methods provide the best fit.

TABLE 3 Effect of an Additional Week of Negative Advertising in the Last 5 Weeks of the Campaign
on Democratic Percentage of the Two-Party Vote

Democratic Nonincumbents Democratic Incumbents

No weights 0.466 −0.953
95% Bootstrapped CI [−0.180, 1.096] [−1.807, −0.198]
90% Bootstrapped CI [−0.066, 0.937] [−1.679, −0.280]

GAM weights 0.667 −0.601
95% Bootstrapped CI [0.109, 1.155] [−1.505, 0.235]
90% Bootstrapped CI [0.240, 1.070] [−1.357, 0.120]

GBM weights 0.537 −0.688
95% Bootstrapped CI [−0.071, 1.169] [−1.468, −0.019]
90% Bootstrapped CI [0.017, 1.034] [−1.283, −0.119]

BART weights 0.509 −0.676
95% Bootstrapped CI [−0.048, 1.073] [−1.422, −0.010]
90% Bootstrapped CI [0.020, 0.969] [−1.283, −0.086]

Note: The outcome is the Democratic candidate’s share of the two-party vote. Bootstrapped confidence intervals are in brackets. The
models also controlled for incumbency, cycle fixed effects, the duration of the negative advertising campaign, campaign length, baseline
polling, and the quality of the opposing candidate. Full model specifications are shown in the supporting information.

of nonincumbents, while having no reliable effects for
incumbents.

In contrast, the bottom rows of Table 3 show that
with more accurate predictions of the action sequence
estimated using tree ensembles, the MSM estimates are
less divergent from previous findings. Specifically, while
the effect of negative advertising for nonincumbents is
also positive and reliably discernible from zero at (ap-
proximately) the less stringent 90% level, the effect sizes
are roughly 20% smaller than those reported in Blackwell

(2013). In turn, when considering incumbents, the tree-
weighted MSM models retrieve effects that are negative,
large, and reliably distinguishable from zero.

Estimating Quantities for Demographic
Subgroups in Large Surveys

Although survey data can provide important insight
into how different sociodemographic traits covary with
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political attitudes and behaviors, it is rarely the case that
surveys are deployed at the level needed to produce es-
timates at the lowest levels of aggregation. For instance,
how does one estimate the propensity to vote of white
non-Hispanic men from Oregon? While such informa-
tion may be of interest to campaigns or researchers,
these quantities are difficult to estimate given standard
techniques.

To create such estimates, Ghitza and Gelman (2013)
use a model-based approach that produces estimates
for small subpopulations using aggregate survey data.
Treating subpopulations as cells in a cross-tabulation
of sociodemographic and geographic traits, Ghitza and
Gelman (GG) use multilevel models to estimate values
as a function of these covariates (and their interactions),
producing predicted cell values that are then reweighted
(or poststratified) using census-based population counts
to produce final estimates. Specifically, GG correctly ar-
gue that the multilevel and poststratification (MRP) ap-
proach improves upon previous strategies “by modeling
deeper levels of interactions and allowing for the rela-
tionship between covariates to be non-linear and even
non-monotonic” (2013, 773). While the benefits are clear,
important questions remain unaddressed: Which demo-
graphic variables should be included when estimating
attitudes with respect to different political issues? Are all
cells different enough to warrant estimation of different
values, or are some interactions not relevant? In general,
questions of model specification in MRP models remain
very important but largely unaddressed (Warshaw and
Rodden 2012).

Given that tree ensembles are particularly well suited
to model precisely these types of relationships (i.e., those
that are highly interactive, nonlinear, and nonmono-
tonic), we argue that they should provide an even better
alternative to multilevel models when it comes to estimat-
ing quantities of interest for small subpopulation groups.
Indeed, as GG clearly articulate, current implementations
of MRP struggle to estimate models with saturated, high-
order interactions on large data sets. As we show below,
however, tree-based methods can quickly and reliably es-
timate models with even deeper interactions than MRP,
letting “the data define the appropriate level of nonlin-
earity and interaction between covariates” (Ghitza and
Gelman 2013, 773).

To compare the performance of tree models to MRP,
we implement an off-the-shelf (i.e., using the default
parameter definitions) estimation of BART models on
the same data as GG, including the same corrections for
survey weights and self-report bias. The data consist of
respondents to three waves of the National Annenberg
Election Survey (NAES) for 2004 (N = 43,970) and 2008

(N = 19,170) and uses respondents’ state of residence,
ethnicity, income, and age to model turnout and sup-
port for Senator John McCain. While both outcomes
are continuous, all predictors are categorical variables
that are then contrast-coded to obtain a set of 64 bi-
nary predictors. More details of the model definition are
given in Ghitza and Gelman (2013) and in the supporting
information.

As a first step, we estimated a model using only the
covariates included by GG. A simple comparison of the
turnout and vote intention estimates for the subpopu-
lations generated by the poststratified BART and MRP
models using these data reveals that they are nearly iden-
tical. The correlations between the estimates generated
using each method are .976 for the turnout and .975 for
the vote choice.

However, the advantage of a poststratified BART is
its ability to produce truly deep interaction models when
the data call for them. To illustrate, consider a model
that allows for interactions between state, ethnicity, in-
come, age, sex, education, marriage status, and whether
a person has children—the full array of demographic
variables contained in the GG data set, which could not
be included in their MRP implementation for compu-
tational reasons. BART is able to easily estimate such a
model, producing interactions whenever the data sup-
port them in a way that requires minimal researcher
intervention.

The results reveal even more nuance than GG’s model
originally displayed. For instance, GG focus on African
American voters in North Carolina, who voted 95–5 for
Obama in a state that went 50–49 for that same can-
didate. GG find that there was a significant difference
between high-income African Americans, who voted 86–
14 for Obama, and low-income African Americans, who
voted 97–3 for Obama. However, further poststratifi-
cation based on sex reveals that this 11-point gap in
vote choice between rich and poor African American in
North Carolina is primarily driven by men. The wealthi-
est African American women in the state are estimated to
have gone 90% for Obama, whereas low-income African
American women went 98% for Obama—an 8-point dif-
ference. Meanwhile, 84% of high-income African Ameri-
can men were estimated to vote for Obama, whereas 97%
of low-income African American men did the same—
a 13-point difference. Similarly, the gap between high-
income and low-income African Americans in terms
of turnout was estimated at 15% for women but 21%
for men.

Disaggregating further by education level also reveals
interesting conditional relations between demographic
characteristics, turnout, and vote choice. Figure 5 shows
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FIGURE 5 Poststratified BART Estimates of 2008 Turnout
and Vote for McCain
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turnout and vote choice estimates for subgroups defined
by state, age, and income, as well as ethnicity and sex.
The estimates are shaded to represent different education
levels, with darker shades representing more educated
subgroups (and bubble size indicating subgroup size).
The association between turnout, McCain vote, and ed-
ucation level is strikingly clear. In general, more highly
educated people tend to turn out more often. They also

tend to support Obama more, although this tendency
is strongest among women. This interaction itself (viz.,
the clustering of more educated groups in the upper-left
portion of the plots for women) is strongest among Lati-
nos and weakest among whites. Thus, using a ensemble
of trees has enabled us to estimate attitudes and prefer-
ences of even smaller subgroups at very little additional
computational costs.
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Conclusion

In this article, we presented tree-based methods as a
promising approach for modeling large data sets in polit-
ical science. We argued that they are particularly valuable
in settings where one wishes to make accurate predic-
tions in the context of a generally unknown DGP with
potential nonlinearities, interactions, and many (poten-
tially irrelevant) covariates. In the spirit of other non-
parametric strategies used in the discipline, these tech-
niques make few assumptions about DGPs or functional
forms relating outcomes to predictors, and the distribu-
tional assumptions they do make are often embedded in
the chosen loss function. Since researchers are increas-
ingly confronted with larger data sets containing many
observations, many possible predictors, or both, we be-
lieve that regression and classification tree models are
worth considering as a more standard tool in prediction
tasks.

To that end, in this article, we have presented a nec-
essarily brief tour of some of the most common tree-
based methods, complemented by three illustrations and
a supplementary information appendix aimed at provid-
ing applied analysts with both insight as to the strengths
and weaknesses of the various models and guidance as to
how these methods can be used in practice. It is, in that
sense, an invitation to adopt these methods as part of the
standard repertoire of statistical tools in the discipline.

Despite their advantages, it is worth emphasizing the
limitations of tree-based models that we noted in our in-
troduction. To begin with, we reiterate that for some tasks,
tree-based models are overly complex and unnecessary.
Indeed, tree models are inappropriate in the context of
a well-understood DGP when our aim is to test for rela-
tionships with clearly hypothesized functional forms. If
the theory can reasonably be represented and tested by a
parametric model, tree models are not the right tools for
the job.

Likewise, tree-based methods are no replacement for
good research design and rigorous theory building. While
the models we have discussed allow researchers to more
easily model complexities in large data sets, they do not
by themselves overcome common issues of endogene-
ity, posttreatment bias, and the like. Even a model with
high levels of out-of-sample accuracy is of limited scien-
tific value when the modeling strategy is poorly thought
out. That is, tree models are no exception to the adage,
“garbage in, garbage out.” Even more, empirical regulari-
ties “discovered” by this nonparametric approach are not
necessarily meaningful in a theoretical sense. That some
set of variables is predictive of an outcome does not by

itself indicate that they are causal or even theoretically of
interest.

Despite these caveats, we feel that there are many
potential uses for tree-based models in political science.
In our illustrations above, we demonstrated how tree
models can be incorporated into standard social sci-
ence tasks such as accurate measurement and causal
inference. Other applications include, for instance, im-
puting missing data (Stekhoven and Bühlmann 2012),
identifying fraudulent vote returns (Montgomery et al.
2015), and using covariates to make individual-level pre-
dictions for effectiveness of interventions (Samii, Paler,
and Daly 2016). More directly, tree models may prove
to be particularly valuable in the context of improving
prediction—an increasingly common task in political sci-
ence research. Our hope is that our discussion and illus-
trations will entice quantitative students of politics facing
increasing demands to make sense of large amounts of
social data to explore the rich possibilities offered by tree-
based methods.
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