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ABSTRACT
The decision to engage in military con!ict is shaped by many factors, including state- and dyad-level
characteristics as well as the state’s membership in geopolitical coalitions. Supporters of the democratic
peace theory, for example, hypothesize that the community of democratic states is less likely to wage
war with each other. Such theories explain the ways in which nodal and dyadic characteristics a"ect the
evolution of con!ict patterns over time via their e"ects on group memberships. To test these arguments,
we develop a dynamic model of network data by combining a hidden Markov model with a mixed-
membership stochastic blockmodel that identi#es latent groups underlying the network structure. Unlike
existing models, we incorporate covariates that predict dynamic node memberships in latent groups as
well as the direct formation of edges between dyads. While prior substantive research often assumes the
decision to engage in international militarized con!ict is independent across states and static over time,
we demonstrate that con!ict is driven by states’ evolving membership in geopolitical blocs. Our analysis of
militarized disputes from 1816 to 2010 identi#es two distinct blocs of democratic states, only one of which
exhibits unusually low rates of con!ict. Changes in monadic covariates like democracy shift states between
coalitions, making some states more paci#c but others more belligerent. Supplementary materials for this
article are available online.
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1. Introduction
Social scientists o!en posit theories about the e"ects of latent
groups of actors on relational outcomes of interest over time.
In the study of international con#ict, scholars debate the so-
called “democratic peace” hypothesis, which states that a speci$c
bloc of actors—de$ned by their democratic institutions—rarely
engage in wars amongst themselves (e.g., Oneal and Russett
1999). Others argue that militarized con#ict is driven by state
membership in geopolitical coalitions that evolve over time
(Farber and Gowa 1997). These theories de$ne latent groups
of actors that underlie the structures of social and political
networks, and stipulate how the formation and evolution of
these groups give rise to various behaviors (Lorrain and White
1971).

To test these theories, we develop a dynamic model of social
networks that extends the mixed-membership stochastic block-
model (MMSBM; Airoldi et al. 2008). The MMSBM is a pop-
ular generalization of the stochastic blockmodel (SBM; Wang
and Wong 1987), which is a factor analytic model for net-
work data characterized by latent groups of nodes (Ho" 2009).
Unlike the SBM, the MMSBM allows nodes to instantiate a
variety of group memberships in their interactions with other
nodes. We extend the classical MMSBM in three ways. First,
we allow memberships in latent groups to evolve over time
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according to a hidden Markov process. Second, we de$ne a
regression model for both latent memberships and observed
ties, incorporating both dyadic and nodal attributes to explain
the formation of groups. This relaxes the strict assumption of
stochastic equivalence for members of the same groups. Finally,
we apply collapsed variational inference and improve compu-
tational scalability of the model. Our approach, which we call
dynMMSBM, therefore frees applied researchers from the need
to resort to a commonly used two-step procedure to evaluate
theories, whereby memberships are $rst estimated, and then
regressed on covariates of interest (e.g., Wasserman and Faust
1994). Furthermore, the proposed model allows for the predic-
tion of group membership and future network ties of previously
unobserved nodes. To facilitate the application of our proposed
model, we develop a fast Bayesian inference algorithm by relying
on a variational approximation to the collapsed posterior (Teh,
Newman, and Welling 2007), using stochastic gradient descent
to accommodate large-scale networks while retaining both the-
oretical properties of the approximation and practical run times
(Ho"man et al. 2013; Gopalan and Blei 2013). We o"er an open-
source so!ware R package, NetMix (available on CRAN), that
implements the proposed methodology.

We use the dynMMSBM to conduct a dynamic analysis of
international con#icts among states over the last two centuries.
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Political scientists have long sought to explain the causes of
interstate con#ict and predict its outbreak. In the study of the
aforementioned democratic peace hypothesis, a signi$cant body
of evidence attests to the low rate of con#ict among demo-
cratic dyads (e.g., Maoz and Russett 1993; Oneal and Russett
1999; Imai and Lo 2021). Others argue that the relationship
is spurious, driven by impermanent geopolitical coalitions that
generated common interests among democracies (e.g., Farber
and Gowa 1997; Gowa 2011). Analysts of the democratic peace
typically want to account for these underlying coalitions, and in
particular ask whether democratic political systems encourage
states to enter the same geopolitical blocs—a question our model
is designed to address.

Our $ndings provide several new insights into the origins of
con#ict in the international system. First, our model identi$es
two distinct blocs of democracies that exhibit disparate rates
of con#ict. One group, composed of states with lower levels of
military capacity, rarely engages in con#ict with other democra-
cies. The other group exhibits no such paci$c tendency, regularly
engaging in militarized disputes among themselves and with
others. Second, we demonstrate that the e"ect of democracy
on con#ict varies both across states and over time. Changes in
domestic political institutions shi! states between latent groups,
making some states more paci$c (e.g., Germany) but others
more belligerent (Kosovo). Over time, the evolution of the group
structure has reduced the average e"ect of democratization on
con#ict.

1.1. Related Models

Methodologically, our work extends the growing literature on
dynamic modeling of network data that exhibit some degree of
stochastic equivalence. In addition to the SBM, a variety of mod-
els are generally available to accommodate such networks. For
instance, the latent position cluster model (Handcock, Ra!ery,
and Tantrum 2007) and the recently developed ego-ERGM
(Salter-Townshend and Murphy 2015) incorporate equivalence
classes into the latent distance and the ERGM models, respec-
tively. Although the more #exible SBM (and all SBM-based
models, such as ours) can capture disassortative relationships
that these other models have a harder time accommodating,
they all share the highly restrictive assumption that nodes play
a single role in all their interactions.

Models like the overlapping/multiple-membership SBM
(Latouche et al. 2011; Kim and Leskovec 2013) or the MMSBM
(Airoldi et al. 2008) fully address this issue by allowing nodes to
belong to multiple equivalence classes. Typically, however, these
models are limited by the fact that they assume independence
of group memberships over time and across nodes, as well
as independence of dyads conditional on the equivalence
structure. This makes it di%cult to accommodate networks
that display both stochastic equivalence and some degree of
heterogeneity across nodes (e.g., networks that have very skewed
degree distributions).

Subsequent work therefore, relaxes some of these indepen-
dence assumptions. For instance, Sweet, Thomas, and Junker
(2014) incorporate dyadic covariates into the MMSBM, thus
allowing for connectivity patterns that are not exclusively the

result of the stochastic equivalence structure. And White and
Murphy (2016) incorporate node-speci$c attributes as predic-
tors of the mixed-membership vectors, thus eliminating the
assumption that all nodes in an equivalence class are exchange-
able. Recent work by Yan et al. (2019) shows that likelihood-
based estimators of these covariate e"ect parameters have desir-
able asymptotic properties, lending further con$dence in the
validity of these extensions. The proposed dynMMSBM derives
from these developments, allowing for dyadic covariates at the
edge-formation stage and for nodal predictors of the mixed-
membership vectors.

Even more attention has been devoted to relaxing the
assumption of independence of networks observed over time,
resulting in important advances to apply the MMSBM in
dynamic network settings (e.g., Xing, Fu, and Song 2010; Ho and
Xing 2015; Fan, Cao, and Da Xu 2015). As most social networks
have a temporal dimension, being able to model the dynamic
evolution of relational outcomes is of paramount importance to
applied researchers. However, while these models o"er #exible
approaches to accounting for temporal dynamics, they o!en
rely on continuous state space approaches like the Kalman $lter,
making it di%cult to periodize a network’s historical evolution.

Since researchers typically periodize history into distinct
“epochs” to make sense of a phenomenon’s evolution, more
discrete approaches to network dynamics would be better
suited to the typical needs of social scientists. Accordingly,
the dynMMSBM relies on a hidden Markov process to capture
the evolution of equivalence class-based network formation.
Furthermore, by assuming that the blockmodel itself (i.e.,
the matrix of edge propensities across and within latent
classes) remains constant over time—so that only memberships
into classes are allowed to evolve—we avoid the issues of
identi$cation raised by Matias and Miele (2017) that a"ect some
of the earlier dynamic MMSBM speci$cations.

To the best of our knowledge, our model is the $rst to simul-
taneously address the need to incorporate dyadic and nodal
attributes as well as the need to account for temporal dynamics,
in an e"ort to develop a model that can be readily employed in
applied research.

2. Challenges of Modeling the Interstate Con!ict
Network

The study of interstate con#ict is of great interest to inter-
national relations scholars and policy makers. The ability to
predict violent political clashes has attracted a large literature
on con#ict forecasting (e.g., Schrodt 1991; Beck, King, and Zeng
2000; Ward et al. 2013; Hegre et al. 2017). In addition, scholars
have sought to understand how speci$c political institutions,
processes, and power asymmetries a"ect war and peace among
states (e.g., Barbieri 1996; Oneal and Tir 2006; Hegre 2008).

When analyzing con#ict data, the most common method-
ological approach is to assume conditional independence of
state dyad-year observations given some covariates within
the generalized linear model framework (e.g., Gleditsch and
Hegre 1997; Gartzke 2007; Dafoe, Oneal, and Russett 2013).
However, there are reasons to believe con#ict patterns violate
this conditional independence assumption. For centuries, states
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have managed con#ict through formal and informal coalitions.
Alliances, for example, a"ect the probability of con#ict both
among allied states and between allies and nonallies. Many
militarized con#icts (most notably, the World Wars) are
multilateral in nature: states do not decide to engage in con#ict
as a series of disconnected dyads, but are drawn into war or
maintain peace as a result of their membership in preexisting,
o!en unobserved groups.

Recent analyses have turned to network models to relax
this conditional independence assumption. Maoz et al. (2006),
for instance, use a measure of structural equivalence among
dyads as a covariate in the logistic regression. In turn, Ho" and
Ward (2004) employ random e"ects to explicitly model network
dependence in dyadic data, and Ward, Siverson, and Cao (2007)
apply the latent space model developed by Ho", Ra!ery, and
Handcock (2002) to international con#ict. Similarly, Cranmer
and Desmarais (2011) propose and apply a longitudinal exten-
sion of the exponential random graph model (ERGM) to con#ict
data. While we build on this emerging body of scholarship that
seeks to model complex dependencies in the con#ict network,
our approach addresses several challenges faced by these exist-
ing network modeling strategies.

First, and although existing approaches can capture higher
order dependencies in con#ict relations, they do not directly
model the evolving geopolitical coalitions that shape patterns of
con#ict. Such a model would more closely re#ect the theoretical
mechanisms explaining why democracies form a distinct com-
munity of states that have achieved a “separate peace” among
themselves. This behavior may arise from the norms of compro-
mise prevalent in democratic societies (Maoz and Russett 1993),
the ability of democratic states to credibly signal their intentions
(Fearon 1994), or the process by which democracies select into
con#icts (Bueno de Mesquita et al. 2004).

A second limitation of network analyses of international con-
#ict is the need to restructure monadic covariates like democ-
racy to $t a dyadic analysis. This problem has exacerbated a
debate in the democratic peace literature regarding the appro-
priate dyadic speci$cation of democracy (see Dafoe, Oneal, and
Russett 2013). An ideal model would directly incorporate nodal
variables at the country level by embedding them within the
generative process of group formation. Finally, most existing
methods do not provide #exibility for the e"ect of democracy
to vary over time, despite theoretical claims that it should do so
(Farber and Gowa 1997; Cederman 2001).

In the following section, we propose a model that over-
comes these shortcomings. The dynMMSBM could uncover a
democratic peace by identifying a latent group that exhibits
low rates of intra-group con#ict and that democratic states are
more likely to join. Other hypotheses in this literature—for
example, the possibility of a similar “dictatorial peace” among
autocratic states (Peceny, Beer, and Sanchez-Terry 2002), inter-
actions between democracy and power asymmetries (Bueno de
Mesquita et al. 2004), and variation in the strength of the demo-
cratic peace over time (Gleditsch and Hegre 1997; Cederman
2001)—are also accommodated by the model structure. Each
latent group is directly associated with its own set of nodal
covariates, and the dynamic implementation provides #exibility
for covariate e"ects to vary over time.

3. The Proposed Model

Analyzing the interstate con#ict network to study the demo-
cratic peace theory requires a model that de$nes the probability
of con#ict as a function of membership in latent groups of
countries. In addition, the model must enable the exploration
of how these memberships evolve over time and how they are
informed by country-level characteristics—particularly regime
type. Furthermore, for practical use, the model should deal with
the computational complexity involved in estimating a dynamic
network model with a large number of nodes.

Below, we describe a modeling approach that addresses these
needs. We $rst de$ne a general regression model for networked
data, and then derive a fast estimation algorithm based on a
stochastic variational approximation to the collapsed posterior
distribution. While we focus our exposition on directed net-
works, our model applies to undirected networks with minimal
modi$cations, as we illustrate in our application.

3.1. The Dynamic Mixed-Membership Stochastic
Blockmodel

Let Gt = (Vt , Et) be a directed network observed at time t,
with node-set Vt and edge-set Et . For a pair of nodes p, q ∈ Vt ,
let Ypqt = 1 if there exists a directed edge from node p to q,
and Ypqt = 0 otherwise. Each node i ∈ Vt is assumed to be
associated with a K-dimensional mixed-membership vector πit ,
encoding the extent to which i belongs to each of K latent groups
at time t.

To study how these mixed-memberships vary as a function
of node-level predictors, and to allow such memberships to
evolve over time, we further assume that the network at time
t is in one of M latent states, and that a Markov process gov-
erns transitions from one state to the next. We then model
each mixed-membership vector as a draw from the following
Markov-dependent mixture,

π it ∼
M∑

m=1
Pr(St = m|St−1) × Dirichlet

(
{exp(x%

it βkm)}K
k=1

)

(1)
where the vector of predictors xit is allowed to vary over time
and the vector of coe%cients βkm for group k is indexed by state
m in the Markov process.

Our model thus extends the MMSBM by allowing the mixed
membership vectors to not only be a function of node-level
predictors, but also by letting these vectors change over time as
the Markov states evolve. Speci$cally, these random states are
generated according to St|St−1 = n ∼ Categorical(An), which
is governed by a transition matrix A and the state at the previous
time period, St−1. We de$ne a uniform prior over the initial state
S1 and independent symmetric Dirichlet prior distributions for
the rows of A.

The model is completed by de$ning a K × K blockmodel
matrix B, with its Bgh ∈ R element giving the propensity of a
member of group g to form a tie to a member of group h (for
undirected network data, B is a symmetric matrix). Thus, we
have,

Ypqt ∼ Bernoulli
(

g−1
(

z%
p→q,tBwq←p,t + d%

pqtγ
))

(2)
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where g−1 is the logistic function, and zp→q,t ∼ Multinomial
(1, πpt) is an indicator vector for the group that node p
chooses when interacting with node q at time t (and similarly
for wq←p,t). To relax the assumption of strict stochastic
equivalence commonly used in other variants of the stochastic
blockmodel, we also incorporate dyadic predictors dpqt into the
regression equation for the probability of a tie, with regression
coe%cients γ .

Put together, the data generating process can be summarized
as follows:

1. For each time period t > 1, draw a historical state St|St−1 =
n ∼ Categorical(An).

2. For each node i at time t, draw state-dependent mixed-
membership vector π it|St = m ∼ Dirichlet

(
{exp(x%

it
βk,m}K

k=1)
)
.

3. For each pair of nodes p and q at time t,
– Sample a group indicator zp→q,t ∼ Multinomial(1, πpt).
– Sample a group indicator wq←p,t ∼ Multinomial(1, πqt).
– Sample a link between them

Ypqt ∼ Bernoulli
(

g−1
(

z%
p→q,tBwq←p,t + d%

pqtγ
))

.

This data-generating process results in the following joint dis-
tribution of observed and latent variables given a set of global
hyperparameters (β , γ , B) and covariates (D, X):

P(Y, L, $, A|β , γ , B, D, X)

= P(S1)

[ T∏

t=2
P(St|St−1, A)

]

×




T∏

t=1

∏

it∈Vt

P(π it|X, β , St)




M∏

m=1
P(Am)

×




T∏

t=1

∏

p,q∈Vt

P(Ypqt|zp→q,t , wq←p,t , B, γ , D)

× P(zp→q,t|πpt)P(wq←p,t|πqt)



 (3)

where L := {Z, W, S} collects all latent group memberships and
hidden Markov states, $ := {π it}it∈Vt ∀t collects all mixed-
membership vectors, and transition matrix A is de$ned as
before.

3.2. Marginalization

As we discuss in more detail in Section 3.3, we derive a factor-
ized approximation to the posterior distribution proportional to
Equation (3) in order to drastically reduce the computation time
required for inference. A typical approximating distribution
would factorize over all latent variables. In the true posterior,
however, latent group indicators zp→q,t (wq←p,t) and the mixed-
membership parameters πpt (πqt) are usually strongly corre-
lated (Teh, Newman, and Welling 2007). Similarly, the Markov
states St and parameters in the transition kernel A are typically
highly correlated in the true posterior.

Therefore, and to avoid the strong assumption of indepen-
dence induced by the standard factorized approximating distri-

bution, we marginalize out the latent mixed-membership vec-
tors and the Markov transition probabilities and then approx-
imate the marginalized posterior. The details of the marginal-
ization can be found in Section A of the supplementary infor-
mation. Letting αitkm = exp(x%

it βkm), αit·m = ∑K
k=1 αitkm, and

θpqtgh = g−1(Bgh + d%
pqtγ ), the resulting collapsed posterior is

proportional to:

P(Y, L|β , γ , B, X)

∝
M∏

m=1



 $(Mη)

$(Mη + Um·)

M∏

n=1

$(η + Umn)

$(η)





×P(s1)

T∏

t=2

M∏

m=1

∏

it∈Vt



 $(αit·m)

$(αit·m + 2Nt)

K∏

k=1

$(αitmk + Citk)
$(αitmk)




I(St=m)

×
T∏

t=1

∏

p,q∈Vt

K∏

g,h=1

(
θ

ypqt
pqtgh(1 − θpqtgh)1−ypqt

)zp→q,t,g×wq←p,t,h (4)

where I(·) is the binary indicator function, and $(·) is the
Gamma function.

The marginalized joint distribution explicitly use a num-
ber of su%cient statistics: Citk = ∑

q∈Vt (zi→q,t,k + wi←q,t,k),
which represent the number of times node i instantiates group
k across its interactions with all other nodes q present at time
t (whether as a sender or as a receiver); Umn = ∑T

t=2 I(St =
n)I(St−1 = m), which counts the number of times the hidden
Markov process transitions from state m to state n; and Um· =∑T

t=2
∑

n I(St = n)I(St−1 = m), which tracks the total number
of times the Markov process transitions from m (potentially to
stay at m).

3.3. Estimation via Variational Expectation-Maximization

For posterior inference, we rely on a mean-$eld variational
approximation to the collapsed posterior distribution (Jordan
et al. 1999; Teh, Newman, and Welling 2007). To do so, we de$ne
a factorized distribution over the latent variables L as

Q̃(L|K, %, &) =
T∏

t=1
Q1(st|κ t)

×
∏

p,q∈Vt

Q2(zp→q,t|φp→q,t)Q2(wq←p,t|ψq←p,t),

(5)

where κ t , φp→q,t , and ψq←p,t are variational parameters. Our
factorized approximation assumes the latent state variables are
independent in the collapsed space. This is a strong assumption,
but one that has been found to strike a good balance between
accuracy and scalability (see Wang and Blunsom 2013).

We then apply Jensen’s inequality to derive a lower bound for
the log marginal probability of our network data Y

P(Y|β , γ , B, X) ≥ L ! EQ̃[log P(Y, L|β , γ , B, X)]
− EQ̃[log Q̃(L|K, %, &)] (6)

and optimize this lower bound with respect to the variational
parameters to approximate the true posterior over our latent
variables (Jordan et al. 1999). To do so, we iterate between $nd-
ing an optimal Q̃ (the E-step) and optimizing the corresponding
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lower bound with respect to the hyper-parameters B, β and γ
(the M-step).

A!er initializing all su%cient statistics and variational
parameters, our E-step begins by updating the φ parameters
for all (pt, qt) dyads in our data as follows:

φ̂
(s)
p→q,t,k ∝

M∏

m=1

[
exp

[
Ef ,Q̃2

[log(αptmk + C′
ptk)]

]]κtm

×
K∏

g=1

(
θ

ypqt
pqtkg(1 − θpqtkg)

1−ypqt
)ψq←p,t,g

(7)

where C′
ptk = Cptk − zp→q,t,k and the expectation is taken over

the variational distribution of Z. By symmetry, the update for
ψq←p,t,k is similarly de$ned. In turn, and for t = 2, . . . , T −
1, we update all hidden Markov state variational parameters
according to

κ̂
(s)
tm ∝ exp

[
−EQ̃1

[log(Mη + U′
m·)]

]

× exp
[
κt+1,mκt−1,mEf ,Q̃1

[log(η + U′
mm + 1)]

]

× exp
[
(κt−1,m − κt−1,mκt+1,m + κt+1,m)Ef ,Q̃1

[log(η + U′
mm)]

]

×
∏

n,=m
exp

[
κt+1,nEf ,Q̃1

[log(η + U′
mn)]

]

×
∏

n,=m
exp

[
κt−1,nEf ,Q̃1

[log(η + U′
nm)]

]

×
∏

pt∈Vt



 $(αit·m)

$(αit·m + 2Nt)

K∏

k=1

EQ̃1
[$(αptmk + Cptk)]

$(αptmk)



 , (8)

where U ′
m· = Um· − st,m and U ′

mn = Umn − stmst+1,n. This
de$nition of the term U ′

mn is valid whenever m ,= n and t ,= T
(for other cases, see Section B of the supplementary material).

In order to avoid a costly computation of the Poisson-
Binomial probability mass function (which is required when
computing expected values that involve su%cient statistics), we
approximate the expectations in these updates by using a zeroth-
order Taylor series expansion, so that Ef ,Q̃2

[log(αptkm+C′
ptk)] ≈

log
(
αptkm + Ef ,Q̃2

[
C′

ptk

])
and similarly for terms involving all

U ′
· counts (Asuncion et al. 2009).

Finally, during the M-step, we $nd locally optimal values of
B, β and γ with respect to the following lower bound, using
a quasi-Newton method (see Section B of the supplementary
material for the expressions of the required gradients),

Lφ,κ (B, β , γ ) !
T∑

t=1

M∑

m=1
κtm

∑

p∈Vt

log $
(
ξptm

)

− log $
(
ξptm + 2Nt

)

+
T∑

t=1

M∑

m=1
κtm

∑

p∈Vt

K∑

k=1
EQ̃[log $(αptmk + Cptk)]

− log $(αptmk) +

+
T∑

t=1

∑

(p,q)∈Et

K∑

g,h=1
φp→q,t,gψq←p,t,h

×
{

ypqt log(θpqtgh) + (1 − ypqt) log(1 − θpqtgh)
}

−
T∑

t=1

M∑

m=1

∑

(p,q)∈Et

K∑

k=1
{φp→q,t,k log(φp→q,t,k)

− ψq←p,t,h log(ψq←p,t,k)}. (9)

To regularize the $t, we de$ne independent standard Normal
priors for all parameters. When required, standard errors for
these quantities are obtained by $rst sampling from the approx-
imate posteriors of the latent variables, and then obtaining
expected values of the log-posterior Hessian evaluated at the
approximate MAP estimates of β , γ , and B.

3.4. Stochastic VI Algorithm

For problems involving large networks, the above variational
approximation can be computationally intensive even a!er par-
allelization (see Section 3.5). To enable fast inference on net-
works with a large number of nodes over multiple time periods,
we de$ne an alternative optimization strategy which relies on
the stochastic gradient ascent approach proposed by Ho"man
et al. 2013, as applied to our collapsed variational target (Foulds
et al. 2013; Dulac, Gaussier, and Largeron 2020).

Like other stochastic VI (SVI) algorithms, ours follows a
random gradient with expected value equal to the true gradient
of the lower bound in Equation 6. To form this unbiased gradi-
ent, and at each step of the algorithm, we sample a mini-batch
of nodes within each time period t uniformly at random, and
form subgraphs Y(s)

t among all dyads containing the sampled
nodes. The algorithm proceeds by optimizing the local varia-
tional parameters (i.e., % and K) for all dyads (p, q) in each
Y(s)

t using the updates given in the previous section, holding
global counts constant at their most current values. We then
condition on these locally updated variational parameters and
obtain an intermediate value of all global counts (i.e., C and
U) by computing their expected value under the mini-batch
sampling distribution.

We $nalize each step by updating these global counts using a
weighted average:

C(s)
t = (1 − ρs)C(s−1)

t + ρsEf [Ct] ;
U(s) = (1 − ρs)U(s−1) + ρsEf [U] (10)

where we set the step-size ρs = (τ + s)−p, and p ∈ (0.5, 1.0] and
τ ≥ 0 are researcher-set arguments controlling the extent to
which previous iterations a"ect current values of the su%cient
statistics (Cappé and Moulines 2009; Ho"man et al. 2013). To
set the values of our hyperparameters we once again follow
an empirical Bayes approach, updating the hyper-parameters
along with the global su%cient statistics by taking a step in the
direction of the gradient of the stochastic lower bound. As an
example, for γ , we have:

γ (s) = γ (s−1) + ρs∇γ L(s)
φ̂,κ̂

(γ ) (11)
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where

L(s)
φ,κ(γ ) =

T∑

t=1

|Et|
|E(s)

t |
∑

(p,q)∈E(s)
t

K∑

g,h=1
φp→q,t,gψq←p,t,h

×
{

ypqt log(θpqtgh) + (1 − ypqt) log(1 − θpqtgh)
}

is a random function that is equal to the third line in Equation 9
in expectation. The updates for all other hyper-parameters are
similarly de$ned (Ho"man et al. 2013). Section B of the supple-
mentary material provides the required gradients.

When using the correct schedule for the step-sizes ρs, this
procedure is guaranteed to $nd a local optimum of the lower
bound without the need to perform a costly update over the
parameters associated with all dyads at every iteration (Gopalan
and Blei 2013).

3.5. Implementation Details

Like other mixed-membership models, there are important
practical considerations when $tting the dynMMSBM. First,
$nding good starting values is essential. In particular, the quality
of starting values for the su%cient statistics in the C global
terms proved to be highly consequential. In our experience,
two approaches worked similarly well: an initial clustering
based on a spectral decomposition of the network’s adjacency
matrix (Jin, Ke, and Luo 2018), and taking a few samples from
the posterior of the simpler mixed-membership stochastic
blockmodel (without covariates) of Airoldi et al. (2008). We
apply these strategies separately to each time-stamped network,
and resolve the ensuing label-switching problem by realigning
the (assumed constant) blockmodels using a graph matching
algorithm (Lyzinski, Fishkind, and Priebe 2014).

Second, and to establish convergence of our collapsed varia-
tional algorithm, we evaluate absolute change in the estimated
hyper-parameters, and stop iterating when all changes fall below
a user-de$ned tolerance level (10.0−4 in our application). In the
case of the SVI algorithm, we retain a small sample of dyads
(viz. 1% of all pairs in our application) before initialization and
evaluate its log-likelihood a!er each iteration, stopping when
average change falls below a tolerance of 10.0−3 or when no
improvement has been observed in the past 20 iterations. The
stopping rule based on a held-out sample helps us avoid over$t-
ting, and reduces the amount of “jitter” induced by the stochastic
gradient descent. Finally, and to maximize computational e%-
ciency, we exploit the assumption of conditional independence
across edges and optimize local parameters % in parallel across
(subsampled) dyads.

In Section C of the supplementary material, we conduct
a series of validation simulations, in which we evaluate the
estimation accuracy using a set of simulated dynamic networks,
and compare the results of $tting a fully speci$ed dynMMSBM
and $tting a separate MMSBM (without covariates) to each
time period. We show the substantial gains in error reduction
resulting from the use of our proposed model.

4. Empirical Analysis

We now apply the dynMMSBM to study the onset of militarized
disputes among 216 states in the years 1816–2010, based on the

Militarized Interstate Dispute (MID) dataset version 4.1 (Palmer
et al. 2015).1 The proposed model uncovers the essential geopo-
litical coalitions that drive con#ict patterns and generates novel
insights into the heterogeneous e"ect of key covariates, like
democracy. Finally, we demonstrate that the dynMMSBM out-
performs the standard logistic regression model in forecasting
future con#icts.

4.1. The Setup

We model con#ict as an undirected network in which ties arise
from states’ evolving membership in six latent groups. While
the substantive results presented below are not sensitive to the
number of latent groups, we found that six provided su%cient
#exibility to model di"erent types of evolving coalitions that
can be qualitatively interpreted. Six latent groups also performed
well in out-of-sample prediction tests (see Table S2 in Sec-
tion D of the supplementary material for prediction tests and
Figures S7 and S8 for a visualization of blockmodel estimates
for speci$cations with $ve and seven groups).

A MID occurs when one state engages in a government-
sanctioned “threat, display or use of military force” against “the
government, o%cial representatives, o%cial forces, property, or
territory of another state” (Jones, Bremer, and Singer 1996,
p. 168). Ties in the network are formed when a new dispute
occurs between two states; subsequent years of the same dispute
are coded as 0. The onset of a MID is a rare event, only occurring
in approximately 0.4% of the 842,685 state dyad-year observa-
tions in our sample.

We include two node-level covariates xpt—the degree of
democracy in a state’s domestic government and the state’s mili-
tary capability—that are hypothesized to in#uence membership
in the latent groups (Maoz and Russett 1993; Hegre 2008).
We measure levels of democracy using the variable POLITY,
from the Polity IV dataset (Marshall, Gurr, and Jaggers 2017).
States are assigned a polity score each year ranging from −10 to
10, with higher values representing more democratic political
institutions. The mean polity score in our sample is −0.43.
Roughly 6% of state years are assigned the minimum score of
−10, and 16% receive the maximum of 10. Moreover, to measure
the military capability of states (MILITARY CAPABILITY),
we use version 5.0 of the composite index (CINC scores, Singer,
Bremer, and Stuckey 1972), and take the log to account for its
skewed distribution. The association between these covariates
and the latent group memberships is assumed to depend on two
hidden Markov states.

In addition, we include four dyadic variables dpqt that
are expected to predict con#icts beyond the e"ects of the
equivalence classes induced by the blockmodel. These include
a dichotomous indicator for a formal alliance between states
in a given year (ALLIANCE); data on alliances comes from
version 4.1 of the COW Formal Alliances dataset (Gibler 2009).
We also include geographic distance (DISTANCE) and the
presence of a contiguous border (BORDER) between states

1The MID data are available at https://correlatesofwar.org/data-sets/MIDs
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Figure 1. Estimated blockmodel in the con!ict network. The left panel displays the adjacency matrix of militarized disputes between 216 states. Black squares indicate
the existence of at least one MID between the states in row x and column y; dotted lines separate states by estimated group membership. The middle panel displays the
estimated probability of con!ict between members of groups as a heat map. The right panel is a network graph summarizing the estimated blockmodel, where size of the
nodes (circles) re!ects aggregate membership in each group and weighted edges (lines) re!ect the probability of con!ict.

(Stinnett et al. 2002).2 A count of common memberships
in international organizations (IO CO-MEMBERSHIPS)
addresses the possibility that interaction in these organizations
decreases con#ict (Oneal and Russett 1999). Following the
literature, we control for further temporal trends using a count
of years since the last militarized dispute between each dyad
and a cubic spline (Beck, Katz, and Tucker 1998). Finally, to
account for the missing values of some predictors, we rely
on a missing-indicator approach, adding dummy variables
that indicate which observations have missing values in the
corresponding variable, and replacing all missing values with
zero.

The model is $tted using our open-source so!ware package
NetMix. Estimation took 1 hr and 18 min on a computer with
a 3.6 Ghz CPU, converging a!er 709 EM iterations. Note that
the estimation time drops to approximately 55 min without the
optional Hessian computation, which calculates standard errors
for the blockmodel, monadic, and dyadic coe%cients.

4.2. Memberships in the Latent Groups

The dynMMSBM allows us to characterize membership in each
latent group as well as the expected relationships between them.
Figure 1 illustrates how patterns of interstate con#ict inform
the estimation of group memberships. The le! panel shows the
216 × 216 adjacency matrix of militarized disputes between
countries, aggregated over the entire time period. Black squares
indicate the existence of at least one MID between the coun-
try represented by row x and the country in column y. The
dynMMSBM assigns each country to a mixture of the six latent
groups, each of which initiates disputes at unique rates. In the
matrix, we sort countries by estimated group membership—
demarcated in the $gure by dotted lines—to demonstrate the
varying rates of con#ict within and between groups.

The middle panel of Figure 1 shows the estimated rates of
con#ict between groups. For example, group 1 has elevated
rates of intra-group con#ict as well as frequent con#ict with

2As an alternative way to address geographic e"ects, we estimate a speci#-
cation that includes a set of regional indicator variables (see Table S3 and
Figures S5 and S6 in the supplementary material).

groups 2 and 5, as evidenced by the darker shade of these cells
in the $gure. Groups 4 and 5 have the most peaceful relations,
initiating disputes with each other 0.14% of the time. Table S4 of
Section D in the supplementary material presents the estimated
blockmodel used to create the $gure.

The right panel combines information on group membership
and dispute rates, depicting each latent group as a node on
a graph. The size of the nodes (circles) re#ects the estimated
membership size of the group. Group 3 is the most popu-
lous, representing 39.9% of country-year observations in the
sample. Group 2 is the second largest (27.2%), followed by
Groups 4 (16.2%), 6 (10.4%), 5 (3.3%), and 1 (2.9%). The edges
(lines) depict the estimated rates of con#ict between groups,
with darker-shaded edges indicating a higher propensity of
con#ict onset.

To gauge the validity of these estimates, we examine whether
the group assignments and dispute probabilities correspond
to known historical con#ict patterns. Our model estimates
that when a country from Group 1 interacts with a country
from Group 2, there is an unusually high probability (13.7%)
that a militarized dispute will occur between them. Probing
the mixed-membership vectors of individual states reveals that
these two groups capture geopolitical divisions between blocs of
powerful states. The United States, Canada, United Kingdom,
and their Western European allies o!en instantiate Group 1,
while China, Russia, and other Eastern bloc countries tend to
instantiate membership in Group 2.

Other groups also reveal important structure in the interna-
tional system. Group 3 includes many countries that maintained
a foreign policy of neutrality throughout much of the 19th and
20th centuries (e.g., Norway, Finland, Ireland, and Costa Rica).
Despite their neutral stance, these states maintained close diplo-
matic relations with the Western allies that populate Group 1.
According to the blockmodel, Group 3 has a low rate of con#ict
with Group 1 (1.7%) and is less bellicose overall. Group 4
includes many countries that were caught in the cross$re of the
intense geopolitical con#ict between the Western and Eastern
coalitions represented by Groups 1 and 2. Afghanistan, Angola,
and Cambodia are among the countries with high membership
in Group 4 that were sites of proxy con#icts during the Cold
War period. Group 5 is composed of many autocratic countries
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Figure 2. Membership in latent groups over time. The "gure shows the average proportion of membership in six latent groups for each year from 1816–2010.

in the Middle East and Africa, while Group 6 features small or
geographically remote countries.

A closer evaluation of estimated memberships during the
Cold War era lends further credence to the validity of the model.
As noted earlier, this period was de$ned by a geopolitical rivalry
between an Eastern bloc, led by the Soviet Union, and a Western
bloc, led by the United States and its NATO allies. To see if
the dynMMSBM recovers the underlying geopolitical structure
of the Cold War, we identify the 15 countries with the highest
average membership probability in each latent group during the
period of 1950–1990. We do this by computing 1

T
∑1990

t=1950 πptg
for every country in a given latent group g. The countries with
the highest membership in each group are listed in Table S5 of
Section D of the supplementary material.

The group memberships of countries are consistent with
presence of competing geopolitical coalitions during the Cold
War. Group 1 contains the major NATO allies, including the
United States, United Kingdom, West Germany, Italy and
Canada. Non-NATO members that sided with the NATO,
including Japan and Australia, also instantiate Group 1 at
high rates. Group 2 consists of the Soviet Union and its
allies in the Eastern bloc (e.g., China, East Germany, Poland,
Czechoslovakia, and Romania). The estimated blockmodel
indicates the competing coalitions experience abnormally high
rates of con#ict.

4.3. The Dynamics of Membership

The dynMMSBM further allows us to examine how latent
group membership changes over time. Figure 2 displays
the evolution of group membership from 1816-2010. Latent
groups expand and contract as countries move in and out
of geopolitical coalitions. Group 2—populated by autocratic
countries with high military capacity—noticeably declines in
membership throughout the period. This re#ects a general
trend toward democratization among industrialized countries,
as well as geopolitical transitions of the Soviet client states

a!er the Cold War concluded. The most peaceful clusters,
Group 3 and 4, increase in membership over the period,
which may be attributable to the consolidation of norms
against military aggression. In the post-World War II era,
decolonization and independence movements led to a sub-
stantial increase in the number of independent countries.
This likely accounts for the late growth of Group 6—a
cluster representing small countries with limited military
capability.

The evolution of groups shown in Figure 2 are consistent
with international relations scholarship emphasizing dynamic
change in con#ict patterns. Cederman (2001), for example, pro-
poses a dynamic learning process in which democratic countries
consolidate peaceful relations over time. The observed growth
of Group 3—a cluster populated by democracies with very low
rates of con#ict—supports this hypothesis.

Figure 3 displays the evolution of group membership for a
select group of countries. There is signi$cant variation across
countries and within some countries over time. The United
States and United Kingdom feature relatively high membership
in Group 1 compared to other countries, as discussed above.
They also exhibit signi$cant membership in Group 3, the other
Western-leaning and democratic cluster. U.S. membership is
comparably stable over the period of the study, while the United
Kingdom consolidates its membership in these groups a!er
transitioning to a democratic political system. For example, we
observe a sharp increase in the U.K.’s membership in Group 3
following the 1867 Reform Act, which newly enfranchised parts
of the urban working class. Russia’s membership is overwhelm-
ingly dominated by Group 2. At the end of the Cold War,
the implosion of the Soviet system shi!s Russian membership
toward Group 3 with a slight reversion in the last few years.

Japan, Cuba, and Iraq further demonstrate how political
shocks like revolution and foreign intervention a"ect con#ict
patterns in ways that are re#ected in latent membership. Japan
experiences a sudden shi! from Group 2 to Groups 1 and 3
upon its defeat in World War II and subsequent occupation by
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Figure 3. Average group membership over time, select countries. The "gure shows, for six countries, the average rate of membership in four latent groups in each year
the country is present in the network.

American forces. The shi! in membership corresponds with a
clear change in the country’s con#ict patterns. Japan’s overall rate
of con#ict declined from 2.7% prior to 1945 to 0.7% therea!er.
More than 60% of Japan’s disputes in the post-1945 period were
with Group 2 members Russia, China, and North Korea.

Cuba’s membership in Group 2 increases sharply following
the onset of the Cuban Revolution and the ascension of the
Castro regime. The country experiences consistently high
Group 2 membership since the 1950s, with a slight attenuation
in the last few decades. In turn, Iraq features two breaks in
latent membership that correspond to con#icts with the United
States. Following the $rst Gulf War in 1990–1991, we observe
reduced membership in Group 2 and increases in Groups 3
and 4. A similar shi! in 2003 re#ects the invasion by the
United States and allied countries and the installation of a new
government.

4.4. Covariate E!ects

The dynMMSBM also enables the examination of covariate
relations that can help characterize the nature of each estimated
latent group. The upper panel of Table 1 displays coe%cient
estimates for the monadic covariates POLITY and MILITARY
CAPABILITY. The estimates represent the e"ect of each
covariate on the log-odds of membership in each latent group.
In the interest of space, and since the majority of the time period
under study (viz. 51.3%) is estimated to derive from this state,
we display the coe%cients only for Markov state 1. See Table S6
in Section D of the supplementary material for Markov state 2
coe%cients.

Democratic regimes (i.e., those with high POLITY scores)
are most likely to instantiate membership in Groups 1 and 3.
This is consistent with the interpretation of Group 1 as the
Western alliance of liberal democracies during the Cold War,
and Group 3 as Western-leaning neutral states. Notably, these
two democratic clusters exhibit di"erent patterns of con#ict.
Group 1 countries have a high rate of military disputes, both
with other Group 1 members (18.2%) and with other groups
(7.7%). Group 3 countries are more consistent with the demo-
cratic peace hypothesis. Predicted con#ict between members of
this group are rare (0.14%), and they also have a lower dispute
rate with other latent groups (2.3%).

Other monadic coe%cients are largely consistent with the
descriptive patterns discussed above. Autocratic regimes sort
into Group 2 at the highest rate. Greater military capability is
negatively associated with membership in Group 6 and posi-
tively associated with membership in the other clusters.

In addition to obtaining estimates for the coe%cients in
our model, we can also predict how the probability of con#ict
changes as a function of the node’s monadic covariates. In the
generative model, group memberships are instantiated for each
dyad in each time period. As a result, countries in the con#ict
network are assigned to a latent group each time they interact
with another country in a given year. Because the probability
of edge formation depends on the group membership of both
nodes in a dyad, a change in one node’s monadic predictor will
yield heterogeneous e"ects across dyads, nodes, and time.

For example, consider the change in predicted con#ict
propensity when each country’s POLITY score is increased
by one standard deviation (6.78), making sure scores increase
only up to the maximum value (10). The overall average e"ect
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Table 1. Estimated coe#cients and their standard errors.

Predictor Dyadic Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

INTERCEPT 12.016 16.539 11.383 12.376 8.836 7.389
(1.069) (1.069) (1.069) (1.069) (1.074) (1.066)

POLITY 0.083 −0.251 0.076 −0.115 −0.091 −0.091
(1.084) (1.083) (1.084) (1.083) (1.096) (1.079)

MILITARY 0.638 1.192 0.130 0.513 0.235 −0.134
CAPABILITY (1.029) (1.029) (1.025) (1.029) (1.048) (1.059)

BORDERS 2.123
(0.001)

DISTANCE −0.0001
(0.002)

ALLIANCE 0.087
(0.001)

IO CO-MEMBERS 0.009
(0.002)

PEACE YRS −0.021
(0.002)

Note: The table shows the estimated coe#cients (and standard errors) of the two monadic predictors for each of six latent groups, as well as those of the dyadic predictors
for edge formation. We present the results from the "rst Markov state, which accounts for the majority of the time period. The estimated coe#cients for cubic splines and
indicators for variable missingness are not shown.
N nodes: 216; N dyad-years: 842, 685; N time periods: 195
Lower bound at convergence: −527, 587.7

of this change on the probability of edge formation, averaging
all dyadic interactions and time periods,

1
T

T∑

t=1

1
|Vt × Vt|

∑

p,q∈Vt

[E(ypqt|POLITY+ 6.78) − E(ypqt)]

is negative but negligible in size: −0.001. Thus, increasing the
degree of democracy in a country results in a minor decrease
in overall con#ict, given the underlying geopolitical coalitions
throughout the time period.

There is, however, a signi$cant amount of heterogeneity in
this e"ect across countries and over time. Figure 4 shows, for a
large set of countries, the di"erence in expected probability of
interstate con#ict due to an increase of one standard deviation
in POLITY score. Many countries (such as Germany, Russia,
and Iraq) are predicted to be substantially more peaceful, on
average, if they were more democratic during the period of the
study. Others, however, experience very little change in con#ict
behavior (e.g., Australia and Nicaragua). A handful of countries
are estimated to become more con#ict prone (e.g., Kosovo, Mon-
tenegro, and Brunei). An increase in polity shi!s these coun-
tries into di"erent latent groups that are more con#ictual, on
average.

The e"ect of democracy varies due to the latent group struc-
ture of the model. In general, shi!s in monadic predictors will
generate e"ects that are nonlinear and contingent upon the
existing group membership of the node in question and the
other nodes in the network. Figure 5 looks within countries to
gauge the e"ect of the shi! in POLITY over time, revealing
additional heterogeneity. To illustrate how monadic e"ects can
vary within countries, consider the sharp drop in the estimated
e"ect of POLITY for Russia from 1918–1921. This period is
preceded by the ascendance of the Bolshevik government, which
took power in November 1917. Over the next few years, the
government engaged in a series of militarized disputes with
the Allied Powers of WWI, who supported anti-communist
forces during the Russian Civil War. This pattern of disputes
is consistent with the estimated blockmodel, which predicts an

Figure 4. Estimated e$ects of covariate shift in polity over time, select states. The
"gure shows the estimated change in the probability of interstate con!ict if a state’s
POLITY score is increased by one standard deviation (6.78) from its observed
value.
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Figure 5. E$ect of shift in polity over time, select states. The "gure shows the estimated change in the probability of interstate con!ict over time if a country’s POLITY
score is increased by one standard deviation (6.78) from its observed value (up to a maximum of 10).

Figure 6. Estimated aggregate e$ect of shift in polity over time. The "gure shows the estimated average change in the probability of interstate con!ict when countries’
POLITY scores are increased by one standard deviation (6.78) up to the maximum POLITY score.

elevated rate of con#ict between Group 1 (United States, United
Kingdom, France, Japan) and Group 2 (Russia). The estimates in
Figure 5 compare these patterns of con#ict to a counterfactual
world in which Russia had a more democratic political system.
Increasing Russia’s POLITY score from its observed value in
1918 (−1) to a higher value (6) shi!s the expected group mem-
bership for Russia away from Group 2 (from 75.4% to 32.4%)
and toward Group 3 (from 10.3% to 40.7%). This reduces the
likelihood of disputes, since Group 3 has signi$cantly lower rates

of inter- and intra-group con#ict. By 1922 the Bolshevik regime
consolidated power and the country’s POLITY score drops to
−7, a!er which an equivalent increase in POLITY has a smaller
e"ect.

Figure 6 displays the average e"ect of POLITY for each
year in the time period. An increase in democracy induces less
con#ict, on average, throughout most of the sample. The e"ect
is noticeably lower during the pre-WWII period, hitting a local
minimum in 1918 (−0.004). The impact of polity has attenuated
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in recent years, when the estimated e"ect of increasing polity
approaches zero.3

Finally, dyadic predictors operate outside the latent group
membership structure, directly in#uencing the probability of
con#ict among states. In a sense, they serve as controls for
alternative networks de$ned on the same node set. The dyadic
coe%cient estimates appear in the bottom panel of Table 1.
Consistent with existing work, sharing a border signi$cantly
increases the likelihood of con#ict. Greater geographic distance
between states has no statistically discernible e"ect on con#ict
propensity. Somewhat surprisingly, the presence of a formal
alliance and joint membership in international organizations
increase the likelihood of con#ict, though these e"ects are sub-
stantively small.

4.5. Additional Analyses

In Section D.9 of the supplementary material, we compare the
results of our empirical analysis with those of the standard
logistic regression model, which assumes all dyad-years are
conditionally independent and forces all node-level predictors
to be transformed into dyadic form. We furthermore emulate
the process of analyzing data in real-time by estimating both
models using data from 1816 to 2008 and then evaluating model
performance on what the forecasting predictions would have
been during the two following years, 2009 and 2010. We $nd that
the dynMMSBM signi$cantly outperforms the conventional
approach in the Diebold-Mariano test for forecasting compar-
ison (Diebold and Mariano 1995). It also marginally improves
on the logistic model in area under the ROC curve, though the
di"erence is not statistically signi$cant.

Our primary results re#ect a batch analysis of the data, taking
all years into consideration. In Section D.7 of the supplementary
material, we replicate our analysis via “online” updating, where
we iteratively expand the time window to update estimates as if
the data had been obtained sequentially, rather than in batch. To
illustrate this approach, we $rst $t a model for the years 1816–
1820, then use the resulting mixed membership estimates as
starting values for a model that incorporates the next window
(1821–1825). We repeat until all years are included (see Table S7
and Figures S9 and S10).

5. Conclusion

We have analyzed a network de$ned by almost 200 years of mil-
itarized interstate disputes in the international system, uncover-
ing previously understudied spatial and temporal heterogeneity.
While prior substantive research o!en assumes the decision to
engage in international con#ict is independent across dyads and
static over time, we demonstrate that con#ict is driven by states’
evolving membership in geopolitical blocs.

Our $ndings add important nuance to the so called “demo-
cratic peace,” whereby regime type is expected to a"ect the

3To ensure these patterns are not a function of ceiling e"ects—given that the
number of states with the maximum polity score of 10 is increasing over
the time period — we also calculate the e"ect of a one standard deviation
decrease in polity (see Figures S11 and S12 in the supplementary material).
The e"ects are substantively identical.

likelihood that any two countries engage in militarized actions
against each other. Our analysis of con#ict patterns reveals two
distinct communities of democratic states: one highly peace-
ful, the other regularly belligerent. The e"ect of democracy on
con#ict is conditional on a state’s initial position in the latent
group structure and its membership in these democratic blocs,
generating heterogeneous e"ects across states and over time.
We also uncover the evolving nature of unobserved geopolit-
ical coalitions, with memberships that conform to theoretical
expectations.

In addition to these substantive contributions to the study
of con#ict, this paper provides applied researchers with the
dynMMSBM, a model that can accommodate a variety of theo-
rized relationships for dynamic network outcomes that display
some form of stochastic equivalence. The $eld of international
relations is full of such dynamic network outcomes: interna-
tional organization memberships, the signing of treaties and
other agreements, and international cooperation in criminal
investigation and prosecution are just a few examples of out-
comes that can be studied using the tools we develop here. To
this end, we make available the open-source R so!ware package
NetMix that implements the methodology we have used to
study international con#ict. In the future, we plan to further
broaden the model’s applicability by considering these and other
outcome variable types. In particular, and given their prevalence
in social scienti$c research, we plan to extend the model to
accommodate bipartite (or a%liation) networks.

Supplementary Materials

The supplementary materials contain complementary empirical analyses
and derivations. Code and data needed to replicate the results presented
in the main text, as well as all analyses presented in the supplementary
materials, can be found at https://doi.org/10.7910/DVN/82CULX.

ORCID
Kosuke Imai http://orcid.org/0000-0002-2748-1022

References

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008), “Mixed
Membership Stochastic Blockmodels,” Journal of Machine Learning
Research, 9, 1981–2014. [1,2,6]

Asuncion, A., Welling, M., Smyth, P., and Teh, Y. W. (2009), “On Smoothing
and Inference for Topic Models,” in Proceedings of the Twenty-Fi!h
Conference on Uncertainty in Arti"cial Intelligence, pp. 27–34. AUAI
Press. [5]

Barbieri, K. (1996), “Economic Interdependence: A Path to Peace or a
Source of Interstate Con#ict?” Journal of Peace Research, 33, 29–49. [2]

Beck, N., Katz, J. N., and Tucker, R. (1998), “Taking Time Seriously:
Time-Series-Cross-Section Analysis with a Binary Dependent Variable,”
American Journal of Political Science, 42, 1260–1288. [7]

Beck, N., King, G., and Zeng, L. (2000), “Improving Quantitative Studies of
International Con#ict: A Conjecture,” American Political Science Review,
94, 21–35. [2]

Bueno de Mesquita, B., Morrow, J. D., Siverson, R. M., and Smith, A. (2004),
“Testing Novel Implications from the Selectorate Theory of War,” World
Politics, 56, 363–388. [3]

Cappé, O., and Moulines, E. (2009), “On-line Expectation–Maximization
Algorithm for Latent Data Models,” Journal of the Royal Statistical
Society, Series B, 71, 593–613. [5]



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 13

Cederman, L.-E. (2001), “Back to Kant: Reinterpreting the Democratic
Peace as a Macrohistorical Learning Process,” American Political Science
Review, 95, 15–31. [3,8]

Cranmer, S. J., and Desmarais, B. A. (2011), “Inferential Network Analysis
with Exponential Random Graph Models,” Political Analysis, 19, 66–86.
[3]

Dafoe, A., Oneal, J. R., and Russett, B. (2013), “The Democratic Peace:
Weighing the Evidence and Cautious Inference,” International Studies
Quarterly, 57, 201–214. [2,3]

Diebold, F., and Mariano, R. (1995), “Comparing Predictive Accuracy,”
Journal of Business and Economic Statistics, 13, 253–263. [12]

Dulac, A., Gaussier, E., and Largeron, C. (2020), “Mixed-Membership
Stochastic Block Models for Weighted Networks,” in Conference on
Uncertainty in Arti"cial Intelligence, pp. 679–688. PMLR. [5]

Fan, X., Cao, L., and Da Xu, R. Y. (2015), “Dynamic In$nite Mixed-
Membership Stochastic Blockmodel,” IEEE Transactions on Neural
Networks and Learning Systems, 26, 2072–2085. [2]

Farber, H. S., and Gowa, J. (1997), “Common Interests or Common Polities?
Reinterpreting the Democratic Peace,” The Journal of Politics, 59, 393–
417. [1,2,3]

Fearon, J. D. (1994). “Domestic Political Audiences and the Escalation of
International Disputes,” American Political Science Review, 88, 577–592.
[3]

Foulds, J., Boyles, L., DuBois, C., Smyth, P., and Welling, M. (2013),
“Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet
Allocation,” in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 446–454.
[5]

Gartzke, E. (2007), “The Capitalist Peace,” American Journal of Political
Science, 51, 166–191. [2]

Gibler, D. M. (2009), International Military Alliances, 1648-2008, Washing-
ton DC: CQ Press. [6]

Gleditsch, N. P., and Hegre, H. (1997), Peace and Democracy: Three Levels
of Analysis,” Journal of Con#ict Resolution, 41, 283–310. [2,3]

Gopalan, P. K., and Blei, D. M. (2013), “E%cient Discovery of Overlap-
ping Communities in Massive Networks,” Proceedings of the National
Academy of Sciences, 110, 14534–14539. [1,6]

Gowa, J. (2011), Ballots and Bullets: The Elusive Democratic Peace, Prince-
ton, NJ: Princeton University Press. [2]

Handcock, M. S., Ra!ery, A. E., and Tantrum, J. M. (2007), “Model-based
Clustering for Social Networks,” Journal of the Royal Statistical Society,
Series A, 170, 301–354. [2]

Hegre, H. (2008), “Gravitating Toward War: Preponderance May
Pacify, but Power Kills,” Journal of Con#ict Resolution, 52, 566–589.
[2,6]

Hegre, H., Metternich, N. W., Nygaard, H. M., and Wucherpfennig, J.
(2017), “Introduction: Forecasting in Peace Research,” Journal of Peace
Research, 54, 5–18. [2]

Ho, Q., and Xing, E. P. (2015), “Analyzing Time-Evolving Networks Using
an Evolving Cluster Mixed Membership Blockmodel,” in Handbook of
Mixed Membership Models and Their Applications, eds. E. M. Airlodi, D.
M. Blei, E. A. Erosheva, and S. E. Fienberg, pp. 489–525, Boca Raton,
FL: CRC Press. [2]

Ho", P. D. (2009), “Multiplicative Latent Factor Models for Description
and Prediction of Social Networks,” Computational and Mathematical
Organization Theory, 15, 261–272. [1]

Ho", P. D., and Ward, M. D. (2004), “Modeling Dependencies in Interna-
tional Relations Networks,” Political Analysis, 12, 160–175. [3]

Ho", P. D., Ra!ery, A. E., and Handcock, M. S. (2002), “Latent Space
Approaches to Social Network Analysis,” Journal of the American
Statistical Association, 97, 1090–1098. [3]

Ho"man, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013), “Stochastic
Variational Inference,” The Journal of Machine Learning Research, 14,
1303–1347. [1,5,6]

Imai, K., and Lo, J. (2021), “Robustness of Empirical Evidence for the
Democratic Peace: A Nonparametric Sensitivity Analysis,” International
Organization, 75, 901–919. [2]

Jin, J., Ke, Z. T., and Luo, S. (2018), “SCORE+ for Network Community
Detection,” CoRR abs/1811.05927. [6]

Jones, D. M., Bremer, S. A., and Singer, J. D. (1996), “Militarized Interstate
Disputes, 1816–1992: Rationale, Coding Rules, and Empirical Patterns,”
Con#ict Management and Peace Science, 15, 163–213. [6]

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999), “An
Introduction to Variational Methods for Graphical Models,” Machine
Learning, 37, 183–233. [4]

Kim, M. and Leskovec, J. (2013), “Nonparametric Multi-Group Member-
ship Model for Dynamic Networks,” in Advances in Neural Information
Processing Systems, pp. 1385–1393. [2]

Latouche, P., Birmelé, E., Ambroise, C., et al. (2011), “Overlapping Stochas-
tic Block Models with Application to the French Political Blogosphere,”
The Annals of Applied Statistics, 5, 309–336. [2]

Lorrain, F., and White, H. C. (1971), “Structural Equivalence of Individuals
in Social Networks,” The Journal of Mathematical Sociology, 1, 49–80.
[1]

Lyzinski, V., Fishkind, D. E., and Priebe, C. E. (2014), “Seeded Graph
Matching for Correlated Erdös-Rényi Graphs,” Journal of Machine
Learning Research, 15, 3513–3540. [6]

Maoz, Z., and Russett, B. (1993), “Normative and Structural Causes of
Democratic Peace, 1946–1986,” American Political Science Review, 87,
624–638. [2,3,6]

Maoz, Z., Kuperman, R. D., Terris, L., and Talmud, I. (2006), “Structural
Equivalence and International Con#ict: A Social Networks Analysis,”
Journal of Con#ict Resolution, 50, 664–689. [3]

Marshall, M., Gurr, T. R., and Jaggers, K. (2017), “Polity IV Project, Political
Regime Characteristics and Transitions, 1800-2016,” Polity IV Project-
Dataset Users’ Manual. [6]

Matias, C., and Miele, V. (2017), “Statistical Clustering of Temporal
Networks Through a Dynamic Stochastic Block Model,” Journal of the
Royal Statistical Society, Series B, 79, 1119–1141. [2]

Oneal, J. R., and Russett, B. (1999), “The Kantian Peace: The Paci$c Ben-
e$ts of Democracy, Interdependence, and International Organizations,
1885–1992,” World Politics, 52, 1–37. [1,2,7]

Oneal, J. R., and Tir, J. (2006), “Does the Diversionary Use of Force Threaten
the Democratic Peace? Assessing the E"ect of Economic Growth on
Interstate Con#ict, 1921–2001,” International Studies Quarterly, 50, 755–
779. [2]

Palmer, G., d’Orazio, V., Kenwick, M., and Lane, M. (2015), “The MID4
Dataset, 2002–2010: Procedures, Coding Rules and Description,” Con-
#ict Management and Peace Science, 32, 222–242. [6]

Peceny, M., Beer, C. C., and Sanchez-Terry, S. (2002), “Dictatorial Peace?”
American Political Science Review, 96, 15–26. [3]

Salter-Townshend, M., and Murphy, T. B. (2015), “Role Analysis in Net-
works Using Mixtures of Exponential Random Graph Models,” Journal
of Computational and Graphical Statistics, 24, 520–538. [2]

Schrodt, P. A. (1991), “Prediction of Interstate Con#ict Outcomes Using
a Neural Network,” Social Science Computer Review, 9, 359–380.
[2]

Singer, J. D., Bremer, S., and Stuckey, J. (1972), “Capability Distribution,
Uncertainty, and Major Power War, 1820-1965,” in Peace, War, and
Numbers, ed. B. Russett, pp. 19–48, Beverly Hills: Sage. [6]

Stinnett, D. M., Tir, J., Diehl, P. F., Schafer, P., and Gochman, C. (2002),
“The Correlates of War (Cow) Project Direct Contiguity Data, Version
3.0,” Con#ict Management and Peace Science, 19, 59–67. [7]

Sweet, T., Thomas, A., and Junker, B. (2014), “Hierarchical Mixed Member-
ship Stochastic Blockmodels for Multiple Networks and Experimental
Interventions,” in Handbook of Mixed Membership Models and their
Applications, eds. E. M. Airlodi, D. M. Blei, E. A. Erosheva, and S. E.
Fienberg, pp. 463–488, Boca Raton, FL: CRC Press. [2]

Teh, Y. W., Newman, D., and Welling, M. (2007), “A Collapsed Varia-
tional Bayesian Inference Algorithm for Latent Dirichlet Allocation,”
in Advances in Neural Information Processing Systems, pp. 1353–1360.
[1,4]

Wang, P., and Blunsom, P. (2013). “Collapsed Variational Bayesian Infer-
ence for Hidden Markov Models,” in Arti"cial Intelligence and Statistics,
pp. 599–607. [4]

Wang, Y. J., and Wong, G. Y. (1987), “Stochastic Blockmodels for Directed
Graphs,” Journal of the American Statistical Association, 82, 8–19.
[1]



14 S. OLIVELLA, T. PRATT, AND K. IMAI

Ward, M. D., Siverson, R. M., and Cao, X. (2007), “Disputes, Democracies,
and Dependencies: A Reexamination of the Kantian Peace,” American
Journal of Political Science, 51, 583–601. [3]

Ward, M. D., Metternich, N. W., Dor", C. L., Gallop, M., Hollenbach,
F. M., Schultz, A., and Weschle, S. (2013), “Learning from the Past
and Stepping into the Future: Toward a New Generation of Con#ict
Prediction,” International Studies Review, 15, 473–490. [2]

Wasserman, S., and Faust, K. (1994), Social Network Analysis: Methods and
Applications (Vol. 8), Cambridge, UK: Cambridge University Press. [1]

White, A., and Murphy, T. B. (2016), “Mixed-Membership of Experts
Stochastic Blockmodel,” Network Science, 4, 48–80. [2]

Xing, E. P., Fu, W., and Song, L. (2010), “A State-Space Mixed Membership
Blockmodel for Dynamic Network Tomography,” The Annals of Applied
Statistics, 4, 535–566. [2]

Yan, T., Jiang, B., Fienberg, S. E., and Leng, C. (2019), “Statistical Inference
in a Directed Network Model with Covariates,” Journal of the American
Statistical Association, 114, 857–868. [2]


