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Abstract

The output of predictive models is routinely recalibrated by reconciling low-level
predictions with known derived quantities defined at higher levels of aggregation. For
example, models predicting turnout probabilities at the individual level in U.S. elec-
tions can be adjusted so that their aggregation matches the observed vote totals in
each state, thus producing better calibrated predictions. In this research note, we
provide theoretical grounding for one of the most commonly used recalibration strate-
gies, known colloquially as the “logit shift”. Typically cast as a heuristic optimization
problem (whereby an adjustment is found such that it minimizes the difference be-
tween aggregated predictions and the target totals), we show that the “logit shift” in
fact offers a fast and accurate approximation to a principled, but often computation-
ally impractical adjustment strategy: computing the posterior prediction probabilities,
conditional on the target totals. After deriving analytical bounds on the quality of
the approximation, we illustrate the accuracy of the approach using Monte Carlo sim-
ulations. The simulations also confirm analytical results regarding scenarios in which
users of the simple logit shift can expect it to perform best — namely, when the aggre-
gated targets are comprised of many individual predictions, and when the distribution
of true probabilities is symmetric and tight around 0.5.

1 Problem Description

A common problem in predictive modeling is that of calibrating probabilities to observed
totals. For example, an analyst may obtain individual-level scores p; € (0,1),i=1,..., N, to
estimate the probability that each of the N registered voters in a particular voting precinct
will support the Democratic candidate in an upcoming election. After the election occurs,
the analyst can observe the total number of Democratic votes, D, cast among the subset
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V C {1,...,N} of registered voters who cast a ballot. But she cannot observe individual-
level outcomes due to the secret ballot. In the absence of perfect prediction, the analyst
will find that ) ;.\, p; # D. She must then decide how to compute recalibrated scores, p,
to better reflect the realized electoral outcome.

This practical problem has direct implications for public opinion research. For example,
|Ghitza and Gelman (2020) recalibrate their MRP estimates of voter support levels after an
election to match county-level totals, while [Schwenzfeiex (IZDJ_Q) proposes using the magni-
tude of the calibration to estimate non-response bias in public opinion polls. The problem is
also of great importance in campaign work. Campaigns frequently seek to target voters who
are most likely to have supported their party in the prior presidential election. Estimates of
prior party support may also serve as predictor variables in models estimating support in
successive elections. Recalibrating the scores to match observed outcomes is thus a crucial
step to improve the scores’ accuracy and bolster future electioneering.

A common heuristic solution to the recalibration problem is the use of the “uniform
swing” , ) on the logit scale. This approach is simple: first, one defines the

function .
h(a) = 5
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and, having observed a total D, one finds the « that satisfies the equation
h(a) =D. (1)

The function A(-) is monotonic in «, so Equation [I] can be solved in logarithmic time using
binary search. The updated scores are then computed as

1

pi—71+1;?ia.

Solving Eq.[dlis equivalent to finding the set of probabilities p; which sum to D and minimize
the Kullback-Leibler divergence (Kullback and Leibler, 1951) with the distribution induced
by the original scores p;. Moreover, if the p; are defined based on a logistic regression, then
this update is equivalent to shifting the intercept in the model by log(«). For more details
on these characterizations, see the Appendix, Section [Al

Examples of this simple recalibration strategy are given by |Ghitza and Gelman dm&i),
Hanretty et all (2016), and |Ghitza and Gelman (2020). This procedure is also familiarly
referred to by campaign workers as the “logit shift”

In this research note, we provide analytical justification for the logit shift. First, we
introduce an alternative procedure for score updating, which simply computes the updated
scores as posterior probabilities, conditional on the target totals. In this procedure, we
assume the original scores p; capture a kind of prior Democratic support probability, while
the updated scores p; reflect the conditional Democratic voting probability given observed
outcomes. Next, we show that this second, more principled approach is well approximated
by the logit shift in large samples. We demonstrate this result analytically and illustrate
it in a small simulation study. Finally, we discuss potential extensions to cases where a
uniform swing is insufficient to capture observed electoral dynamics.

IThe term “logit swing” is also commonly used.



2 Recalibration as a posterior update

To motivate the posterior update approach, we introduce some additional notation. We
define each voter’s choice as a binary variable W; € {0, 1}, where W; = 1 signifies a Demo-
cratic vote and W; = 0 signifies a Republican vote (we suppose a two-candidate election
for simplicity). The W; are modeled as independent Bernoulli random variables, where
W; ~ Bern(p;). In other words, the p; = P(W; = 1) can be thought of as the prior, un-
conditional probability of casting a Democratic vote. In this model, it is straightforward
to approach score recalibration by defining a new set of updated scores, {p;}, using the
following conditional probability (which automatically sum to D over voters 7):

pi=P|(Wi=1|> W;=D

JEV
P(Wi=1,5,0W; = D) (2)
P (Z jey W; =D )
=pi X &
where & = Py Wi=D-1) is a ratio of two Poisson-Binomial probabilities — that is,

552, Wyev=D)
probabilities over the sum of independent but not identically distributed Bernoulli random
variables (IQhQn_and_Liﬂ, |l&9_ﬂ) Explicit computation of the p} is quite challenging, as effi-
cient computation of Poisson-Binomial probabilities is extremely computationally demand-
ing at even moderate sample sizes, despite substantial recent advances in the literature
(Olivella and Shiraito, 2017, shmgé, |201d) To compute the p}, we would need to compute
one unique Poisson-Binomial probability per unit in the population. Hence, if the number of
actual voters |V| were even modestly large, it would be computationally infeasible to obtain
these exact posterior probabilities.

3 Logit shift approximates the correct posterior

3.1 Preliminaries

In this section, we show analytically why the logit shift is a good approximation to the
general posterior update in Eq. To do so, we begin by defining two terms, the ratio

P(>,.; W=D )
i = Mv—j;l)l), and the function f(x,s) = @ .

Simple substitution, along with a useful recursive property of the Poisson-Binomial dis-



tributionE makes it clear that
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In words, Eq. Blshows that ¢; is precisely the “shift” that turns each p; into the desired,
recalibrated posterior probability p;. The logit shift, however, uses a constant « to approx-
imate the vector of recalibrating shifts {¢;};cy. What remains, therefore, is to show that
the value of o that solves Eq.[dlis a very good approximation of ¢; for all values of .

To do so, we establish a couple of facts: that the value of « is bounded by the range of
{®i}icy, and that each ¢; in turn has well-defined bounds:

Theorem 1. The value of o which solves Equation [l satisfies:

P (S, W;=D) P (S, W;=D)

min < a < max

Proof. The proof can be found in the Appendix, Section [Bl |

Theorem 2. For any choice of i €V, we have
P(SiaW-P41) _ B(Sm-0) _ P(Suw-)
) R A ) B P Ty

Proof. The proof can be found in the Appendix, Section

2Namely,

P(ij:D> :piXP(ZWj:D—1>+(1—Pi)><]P’<ZWj=D> .
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3.2 Main Results

The bounds from Theorem [ apply regardless of the choice of i, so we can combine the two
theorems to find that

P(Zjeij :D+1> < min
P(Zjeij:D) o P(Ej;&iwj:D_l)
< max P(Ej;&iwj:D) < P(Zjeij:D) '
CP(SaWi=D-1)  P(L,eWi=D-1)

This is useful, because we can now use the outer bounds in Eq. H to obtain a bound on
the approximation error when estimating recalibrated scores p? (obtained from the posterior
update approach) via p; (obtained from the logit shift):

P (%, W =D) -,

(4)

Theorem 3. For large sample sizes, we obtain

15, _p*+(’) ;
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Proof. The proof can be found in the Appendix, Section
O

Theorem [3 states that the error in using the logit shift approach to approximate the
posterior recalibration update depends on the precision of the Poisson-Binomial distribu-
tion over sums of binary outcomes being aggregated (votes for the Democratic candidate,
in our running example). As the variance of Poisson-Binomial deviates is maximal when
all underlying probabilities are equal to 0.5, it follows that, in our running example, the
approximation will perform best when voters in V are equally likely to vote for either party.
As voters become more heterogenous, or as their support becomes more lopsided (or both,
as would be the case in heavily polarized electorates), the quality of the approximation is
expected to suffer. Fortunately, the binding bounds in Eq. d are extremely tight for large
enough samples, so that even in the worst case-scenarios, the approximation can be expected
to perform well. We now briefly illustrate our analytical results with a small Monte-Carlo
simulation.

4 Simulations

We conduct a brief simulation study to empirically demonstrate the efficacy of this approach.
We simulate using 1,000 units, a sample size at which computations of the true p; are
possible. We draw the initial probabilities p; according to the six distributions discussed in
Biscarri et all (2018). We then consider the cases in which the observed D is either 20%
above or 20% below the expectation, >, p;.

We compute the true probabilities using Biscarri’s algorithm as implemented in the
PoissonBinomial package (@, M), and compare it against the estimates obtained
using our heuristic method. We report the RMSE as well as the proportion of variance in
the true p} that is not explained by our method. Results are given in Table[d Across all
settings, our approximations perform extremely well.




p; Setting Sampling Distribution Observed D RMSE 1 — R?
Uniform Uniform(0, 1) —20% 0.00022 5.58x10~7
Uniform Uniform(0, 1) 20% 0.00021 5.46x10~7
Close to Zero Beta(0.1, 3) —20% 0.00047 3.41x107°
Close to Zero Beta(0.1, 3) 20% 0.00039 1.85x107°
Close to One  Beta(3, 0.1) —20% 0.00036 1.22x10¢
Close to One  Beta(3, 0.1) 20% - -
Extremal 0.5*Beta(0.1, 3) + 0.5*Beta(3, 0.1) —20% 0.00048 1.14x10¢
Extremal 0.5*Beta(0.1, 3) + 0.5*Beta(3, 0.1) 20% 0.00048 1.12x107¢
Central Beta(3, 3) ~20% 0.00015 6.86x10°7
Central Beta(3, 3) 20% 0.00015 6.86x10~7
Bimodal 0.5%Beta(3, 10) + 0.5*Beta(10, 3) —20%  0.00023  6.92x107
Bimodal 0.5%Beta(3, 10) + 0.5*Beta(10, 3) 20%  0.00023 6.86x10~7

Table 1: Approximation error, as measured by RMSE and 1 — R?, using our heuristic method
vs. the true Poisson-Binomial probabilities, under various settings. No results are reported
in the row in which 1.2 x )", p; would exceed the sample size of 1,000.

5 Discussion

In this paper, we have considered the problem of updating voter scores to match observed
vote totals from an election. We have shown that the relatively simple “logit shift” algorithm
is a very good approximation to computing the true conditional probability. This is an
especially useful insight for campaign analysts and researchers alike, because the logit shift
is significantly more efficient computationally than the calculation of the exact posterior
recalibration update.

It is worth being explicit about the limitations of this approach. Under the posterior
update model, we treat the original scores p; as a prior over Democratic vote probability. In
turn, the updated scores p; deviate from the initial scores only by assuming the observed vote
tallies deviate from the expectation of ), p; due to random error. Crucially, the updated
probabilities retain the same ordering as the prior probabilities, which implies the original
scoring model must discriminate positive and negative (but unobservable, in the case of
voting) individual cases well. It is also important to note that the realization of V over
which values of D are defined can have an impact on the quality of the approximation: the
approximation will be better when the number of Democratic votes D tallies the choices of
voters in very competitive districts than when it tallies votes in landslide ones, and choosing
a level of aggregation with too few voters in it could render the error bounds too loose. In
most practical instances, however, the logit shift can be expected to perform very well.

Hence, this approach represents a useful — albeit crude — method of updating individual-
level scores to incorporate information from a completed election. More complex insights
about the electorate, such as the marked underperformance of Democrats among Hispan-
ics voters in the 2020 election, cannot be directly incorporated by computing the posterior
probabilities (or their approximation via the logit shift). Methods based on ecological in-
ference (e.g. King et all, IZDDAI) would be necessary to capture this structure. Such methods
represent a promising potential extension of the insights provided in this manuscript.
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A Characterizations of the Logit Shift

First, we show that the logit shift minimizes the summed KL divergence between p; and p;,
subject to > p; = D constraint.



Define the minimum-KL-divergence optimization problem as

i - 1—pi
minimize Z —;log ({9—) — (1 —&;)log (1 D )

T

ey (5)
subject to Z:Ei =D, 0<z;<1forieV.
%

The Lagrangian for Optimization Problem [l is
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We make the standard assumptions that 0 < p; < 1foralli € Vand 0 < D < |V|. Define the
point ({Z;}, {\:},{vi},v) = ({pi}, {0},{0},log(er)). We consider the Karush-Kuhn-Tucker
(KKT) conditions at this point. For the Lagrangian gradient condition, observe:

VL ({5, 10}, 10} Jog) = —tog (270220 4 tog(a)

N pi/(1 —pi) oela
= ~log (pz-/<a<1 —pm) log(a)
-0,

while the other four KKT conditions are automatically satisfied at this point. It follows
that this point is dual optimal. Lastly, because the objective function is convex and there
exist choices of x; satisfying 0 < z; < 1 for ¢ € V and Zz‘ev x; = D, strong duality is
attained. Hence, our point is optimal and the p; are a solution to Optimization Problem [l
For background technical details, see [Boyd et all (2004).

Next, we show that this procedure is equivalent to an intercept shift if the p; are defined
based on a logistic regression, i.e.

~exp(Bo + XiB)
Pi= 1y exp(Bo + Xi0).

where By € R is the intercept, X; € R? is the covariate vector for unit i, and 8 € R? is the
coefficient vector. Plugging this expression into the definition of p;, we obtain

1
1+ exp(—Bo — XiB)a
1
1+ exp(—(Bo — log(a)) — X, f3)
~exp(fBo — log(a) + X;8)
1+ exp(Bo — log(a) + XipB)’

pi =

where on the last line we see that p; is formulated as a logistic regression with an identical
coefficient vector and its intercept shifted by — log(c).



B Proof of Theorem [l

For a fixed choice of &, observe that g(x, s) is monotonically decreasing in every component
of s. Denote a = {a}ey, the vector repeating o a total of |V| times. Because

g(p,¢)=D and g(p,a) =D,

it follows immediately that a must lie between the largest and smallest value of ¢; across
all choices of i.

C Proof of Theorem

T he log- ncav1ty of the Poisson Binomial distribution is a well-established result (see e.g.

. Hence, for any choice of i, we have
2
W;=D-2|P|Y W;=D|<P|Y W;=D-1 (6)
J#i J#i J#i

Multiplying both sides of the equality by p;, and adding the same quantity to both sides,
we obtain an updated inequality

S>W;=D-2|P(> W;=D|+10-p)P (> W;=D-1|P|Y W;=D] <
i#i i i i
2

SWy=D—1| +(1-p)P > W;=D-1|P|> W;=D
JF#i J#i J#i

Collecting terms, we get

> W=D PIY Wy=D-2|+0-p)P|Y W;=D-1]|<

J#i J#i J#i

SWy=D-1||pP > W;=D-1|+0-p)p|> W;=D

i J#i i

The terms in parentheses can be collapsed into a single Poisson Binomial probability, making
use of the recursion defined in Footnote 1. Subbing these expressions into Inequality [7] we
obtain

SW;=D|P|Y W;=D-1|<P|Y W;=D-1|P|> W;=D|,

J#i JjEV JFi JEV

which yields the upper bound in Theorem 2.
The proof of the lower bound proceeds by incrementing D by 1 in Inequality [6] and
following the same set of steps.



D Proof of Theorem

Under the bounds defined in Inequality 4 in the main text, we obtain the following approx-
imation bounds for «y;:

P(Z;‘ev W;=D) _ P(Ejev W;=D+1)
|ov — 4] - P(> ey W;=D—1) P(3, ey W;=D)
o - P(X ey W;=D+1)

P(Ejev WJ':D)

It is a well-established result that, for large NV, the Poisson-Binomial behaves approximately
as a Normal random variable with the same mean and variance (see e.g.|Siripr

/L:ij and 02:ij(1—pj)-
j J

Denote as 1(d) the density of a Normal distribution N (11, 0%) with this mean and variance,

evaluated at d. [Siripraparat and Neammaned (IZQZ]J) show that over all possible choices of
d, the largest deviation between (d) and P (Zjev W, = d) is bounded above by C;/o?

for a constant Cy > 0. Hence

2021), namely
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Lastly, we observe

observing
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where the last line follows by plugging in the bound on («a — ¢;)/¢; from Inequality B and
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